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Abstract—Dynamic Adaptive Streaming over HTTP (DASH)
is a standard for delivering video in segments and adapting each
segment’s bitrate (quality), to adjust to changing and limited
network bandwidth. We study segment prefetching, informed
by machine learning predictions of bitrates of client segment
requests, implemented at the network edge. We formulate this
client segment request prediction problem as a supervised learn-
ing problem of predicting the bitrate of a client’s next segment
request, in order to prefetch it at the mobile edge, with the
objective of jointly improving the video streaming experience
for the users and network bandwidth utilization for the service
provider. The results of extensive evaluations showed a segment
request prediction accuracy of close to 90% and reduced video
segment access delay with a cache hit ratio of 58%, and reduced
transport network load by lowering the backhaul link utilization
by 60.91%.

Index Terms—Video streaming, DASH, caching, prefetching,
machine learning, MEC, 5G.

I. INTRODUCTION

THE POPULARITY of high-quality video streaming has
made video content providers the predominant bandwidth

consumers on the Internet. There is also an ever-increasing
interest in live video streaming scenarios such as sports events,
live performances, news, and e-gaming. More specifically,
the widespread deployment of high-capacity mobile networks
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like 4G and 5G has boosted the adoption of video streaming
scenarios over dynamic wireless networks.

Currently, Dynamic Adaptive Streaming over HTTP
(DASH) is the dominant video delivery standard, adopted by
a sizeable body of video content providers [1]. The main
idea behind DASH is to adapt to the varying availabil-
ity of network bandwidth to provide an acceptable level of
video quality while minimizing stalls. This is achieved by
dynamically adjusting the bitrate [2] to the availability of band-
width. DASH [3] dictates that videos in the DASH server be
split into equal duration segments, each of them available at
multiple video bitrates (indicating video qualities). Once the
DASH client initiates video streaming, the video segments are
requested and downloaded sequentially from the DASH server.
An Adaptive Bitrate (ABR) algorithm at the DASH client
selects the bitrate of the segment requested. This algorithm
decides on the bitrate of a segment given multiple parameters,
such as network status, application state, and buffer state at the
client (cf. [4]). The idea is to request the highest quality that
the network can deliver without the risk of stalls or reduced
viewing experience due to frequent jumps in video quality.

A. Problem

With higher bandwidth availability on 4G and 5G, an
increasing number of users streaming video are now on mobile
wireless networks. This increases the challenge for DASH
to adapt to the rapidly changing network state in mobile
networks. Furthermore, the streaming of popular live videos
by many users results in redundant usage of the backhaul
(BH) bandwidth, which is a valuable resource for Mobile
Network Operators (MNO), which can become overloaded
quickly [2], [5]. However, with the standardization and adop-
tion of Multi-access Edge Computing (MEC) technology and
deployment of MEC nodes close to mobile base stations, there
is an opportunity to provide better streaming services to users
in live streaming as well as Video On Demand (VOD). The
current implementation of DASH-based streaming cannot rely
on its own to tackle the challenges of highly dynamic networks
that cause stalls and rapid bitrate changes, as well as the
challenge of inefficient usage of the backhaul for MNOs due
to the transmission of redundant live video segments. When
it comes to video content in general, bringing the content
closer to the users based on the popularity of videos has been
achieved using Content Delivery Networks (CDNs) to reduce
latency [6], [7]. While CDNs do relieve the larger network by
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bringing popular content closer to the users, in the context of
MNOs, they do not reduce the backhaul bandwidth utilization
of MNOs [8], [9] and do not leverage the resources available
at the mobile edge MEC nodes.

B. Solution

MEC provides processing, storage, and virtualization
resources at the mobile edge, in the proximity of the mobile
end users, and hence most exposed to dynamic network state
variations. It also offers a set of services, such as Radio
Network Information Service (RNIS), location service, and
traffic offloading, to name a few [10], at the edge that
can be utilized by over-the-top applications (OTTs) such as
HBO Max, Hulu, Netflix, and others to improve their service
delivery measurably.

A promising scenario for MEC is to employ it for prefetch-
ing and caching video content at the network edge. Prefetching
is a technique to move the content closer to the end-user (to the
Radio Access Network (RAN) in our scenario) before being
requested by the user. Prefetching video segments during play-
back of an ongoing video reduces access delay and improves
performance for the user. Moreover, if the video streaming
is from a use case scenario mentioned earlier, e.g., sports
events, live performances, or e-gaming, then it also reduces
backhaul bandwidth utilization. By implementing prefetching
at the MEC, we allow the RAN to potentially stream a seg-
ment to the user while the next segment is being fetched
from the video server. And by also implementing a video seg-
ment cache, the MNO backhaul bandwidth utilization from
live streaming videos can be significantly reduced [8], [11].
However, considering that the caching storage at the edge is
limited and potentially shared among a large number of appli-
cations and users, we need to make intelligent prefetching and
caching decisions with existing constraints.

We propose a solution based on prefetching and caching at
the mobile edge to bring video segments closer to the users,
as well as cache them for repeated requests in the case of
live streaming scenarios. The live streaming scenarios we con-
sider are in practice near-live scenarios due to inherent delays
in digital video streaming with streams often delayed by a
few segments, because of which we assume that at least one
segment ahead is created at the video server at the time of
download of the current segment. We emphasize here that the
prefetching and caching are not based on the popularity of
the entire video stream. It is instead done after a user initiates
a video stream on a per-segment basis, with segments being
prefetched and cached as the streaming progresses. While the
resources available at the edge can be used to bring video
content even closer to mobile users, the scale of resources
available at the mobile edge is much lower in comparison
to CDNs. So instead of moving content closer to the edge
based on long-term video popularity, we apply prefetching,
with benefits to live scenarios as well as VOD.

Prefetching involves proactively fetching a segment before
the user requests it. However, since in DASH, each video seg-
ment is requested at a particular bitrate, we need to be able
to predict this bitrate of the expected segment request from

a client. We propose methods to make these predictions at
the MEC, deployed in the Radio Access Network (RAN),
by leveraging the metrics available there. As dictated by a
recent MEC standard [12], each MEC node co-located with
one or more mobile base stations has access to RAN met-
rics through the RNIS API. We use cross-layer monitoring,
combining metrics from the application layer (metrics spe-
cific to the DASH video application) with metrics from the
RAN (accessed through RNIS) and evaluate their ability to
add insight to the prediction of segment bitrate, which is also
an application-specific metric.

While the focus of our approach is on live streaming sce-
narios with video segment overlap, it also provides benefits to
VOD scenarios. In live streaming we prefetch currently rel-
evant segments at the predicted bitrate to provide savings in
backhaul bandwidth utilization as well as move the content
closer to the users. In a VOD scenario, however, we still reap
the benefits of reduced delay in segment download because we
move segments (at the predicted bitrates) closer to the clients.

In summary, our proposed solution consists of
two algorithms:

• To predict the bitrate of expected video segment.
• Intelligently decide on which requests to prefetch given

resource constraints at the edge.

C. Methodology

We explore both classical Machine Learning (ML) and
neural networks approaches for predicting segment request
bitrates, using metrics from cross-layer monitoring (RAN and
application metrics). We begin with an exploratory analysis
of the dataset and then provide an in-depth analysis of the
associated ML task of predicting bitrate of segment requests.
Moreover, we propose novel prefetching methods to maximize
cache hit and byte hit ratios at the MEC under varying con-
straints. In particular, we use Integer Linear Programming
(ILP) techniques for studying the trade-offs between different
prefetching approaches as well as online video transcoding at
the edge. By employing transcoding, we can encode a high
bitrate segment into a lower bitrate one. Thus, we are able
to use processing resources at the MEC in order to generate
a desired bitrate. We consider the cost to transcode as well
as the cost to prefetch in our prefetching optimization model.
Finally, we propose a heuristic to combat the scalability issue
of the proposed ILP model, reaching a near-optimal solution.

We use datasets generated from ns-3 [13] simulations to
train and validate our ML models as well as to evaluate the
bitrate predicting and prefetching approach.

D. System Architecture

Fig. 1 illustrates our considered system architecture, which
constitutes four main components: a remote video server
deployed in the Data Network (DN), the 5G Core (5GC), MEC
servers, and DASH clients, which are running on the users.
The video server hosts all the videos, with each video available
in segments at multiple different bitrates. In live streaming, it
is hosted at the service provider’s server, which then plays
the role of the video server. The prefetcher algorithm situated
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Fig. 1. Our system architecture for a MEC-enabled mobile network, with a
video server providing streaming service to a DASH client. The components
detail the various functional units necessary for monitoring metrics, predicting
segment requests, prefetching, as well as all supporting components required
for these tasks.

in the 5GC gathers prediction inferences of all the connected
MEC nodes at the edge and makes decisions about prefetching
video segments to the MEC nodes or directly serving the client
from the video service. This setup requires using a DASH
application proxy at the MEC, which hosts this proxy for OTT
services. This proxy is needed at the MEC for it to have an
observation point (for metrics) and a control point (to prefetch)
that sits between the clients and the server. In our proposed
system architecture, the proxy also maintains the state of each
client it serves and computes application metrics at the MEC
that would otherwise only be available at the DASH client,
such as buffer occupancy. This is done by maintaining the
state of the duration of segments served and the actual time
passed since streaming began. An alternate implementation
approach is for the DASH clients to insert this information
into their segment request messages. The hosting of a proxy
at the MEC is a potential MEC service provided by the MNOs
to OTT services to help them meet their service requirements
to their clients [14]. It is worth mentioning that the state to be
maintained for each client is around 20 bytes, computed based
on the number of features logged per client. Therefore, with
a relatively small amount of state memory (e.g., 10 MB) we
could store the state of 500 clients, which would be reasonable
for the users potentially served through a MEC.

Given MEC constraints, the prefetcher decides which of the
predicted segment requests shall be fetched. It can also be that
the prediction for the bitrate of the segment was incorrect, and
the bitrate prefetched is not the one that gets requested. This
means that the cache at the MEC may not have prefetched
every requested segment at the requested bitrate. In such a
case, a cache miss occurs, and the client is directly served
from the main video server.

If the predicted request can be satisfied by segments already
prefetched and placed in the cache, then it can be served from
the cache. If the cache cannot fulfill the request, the prefetcher
makes one of the following decisions: (i) prefetch the predicted
segment requests with the predicted bitrate, (ii) prefetch at a
higher bitrate, and then transcode the segment to serve user
requests of lower bitrates, (iii) redirect the request to one of the
neighbor MEC servers that can have the same or even a higher
bitrate that can be transcoded, or (iv) redirect the request to
the video server. It is important to mention that this process is
performed after handling the request for a segment and before
the next segment is requested.

Fig. 2. Metrics aggregated over an aggregation window, used to predict
bitrate of requests in upcoming prediction window.

In what follows, the segment bitrate prediction problem is
presented in Section II, following by the prefetching algo-
rithm in Section III. The process of dataset generation for our
experiments is described in Section IV, following by the evalu-
ation of the ML models used for bitrate prediction presented in
Section V. The evaluation of the ILP and heuristic for prefetch-
ing decisions are given in Section VI. Relevant research
findings are presented in Section VII, before conclusions in
Section VIII.

II. APPROACH: VIDEO SEGMENT PREDICTION

A. Problem Formulation

In DASH video streaming, segments are requested sequen-
tially by the clients at the bitrate chosen by the client’s ABR.
Once a segment is downloaded or fetched, the ABR algorithm
at each client decides, not only the bitrate of the next segment,
but also when it should be requested. Considering a limited
buffer at the client and the risk of stalls, the ABR algorithm
decides when to request the next segment based on the status
of its buffer. In our approach, the prefetching of a segment is
also done in sync with the client’s expected requests, so seg-
ments are prefetched to the MEC only when they are expected
to be needed on the client side. The time between requests is
not constant and decided by the ABR algorithm in the client.
The requests from clients are also not synchronized and spread
over time. The goal of the prefetching algorithm is to intel-
ligently regulate the prefetching of expected segments from
the different clients to the MEC nodes at the edge, taking into
account the scarcity of resources at the edge. It takes a finite
amount of time (discussed in Section VI) to process these
requests and make a decision which adds a cost to the pro-
cess. We thus aggregate requests from all active clients over a
short time window for decision making. The choice of window
size is evaluated and motivated further below.

Fig. 2 shows the timeline of how bitrate predictions and
prefetching are done in time windows. Periodically every
Wpred seconds (2 seconds in our implementation), the MEC
node uses the previous Wagg seconds (16 seconds in our
implementation) of cross-layer metrics and predicts the bitrate
of the next request from each client. These requests, predicted
for all active clients served by a MEC node, are combined and
passed on to the prefetching agent, which makes the decision
of which of these requests to prefetch and then prefetches the
segments. The prediction and prefetching decisions are made
as indicated in the legend of Fig. 2, and the same goes for
the time to prefetch. This time to prefetch at the MEC is typ-
ically much lower than the time to stream it over the radio
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TABLE I
INPUT FEATURES TO THE LEARNING MODEL AND THE

OUTPUT FEATURE TO BE PREDICTED

network since the bandwidth of the backhaul is much larger
than the bandwidth of the mobile wireless channel [8]. This
means that a segment is likely to be prefetched at the MEC
before a client sends out the next request. However, if a client
requests a segment before the prefetcher is able to prefetch it
then the request is forwarded to the video server instead of
being served form the MEC resulting in a MEC cache miss.

The cross-layer metrics aggregated in Wagg are the input
features to the ML algorithm, and the bitrate of the one step
ahead expected segment request is the output feature. The fea-
tures used have been listed and described in Table I. There are
two categories of input features. RAN metrics from the PHY
and MAC layers and application metrics from the DASH appli-
cation. The input metrics also contains one step prior bitrate
of the previous segment request.

As mentioned before, the requests from clients are not reg-
ular and hence creating a periodic Wpred window means that
we might have samples where we see that more than one seg-
ment got requested, or even that no segments were requested.
If we create larger Wpred windows then most windows would
be populated, but it would result in several windows having
more than one request. If Wpred is too large then the ML
algorithm would need to predict the bitrate and number of seg-
ments expected to be requested at each inference and decision
instant, and in the right order, which is challenging and reduces
the prediction accuracy as compared to only predicting one
step ahead at a time. If Wpred is too small then we would not
aggregate enough requests from multiple clients, and increase
the cost of computing the prefetching decision in terms of
compute and time resources. These considerations have been
taken into account in the selection of Wpred .

Since the MEC aggregates expected requests from all clients
it serves to make a decision at the prefetcher, most decision
instants have many expected segment requests. However, the
segment bitrate predictor makes predictions per user and does
not need to predict every Wpred . If an already prefetched seg-
ment is yet to be requested by the client, then new predictions
are not made until the segment in the cache is requested. This
time between segment requests can vary depending on the
video buffer occupancy, and on the differences between esti-
mated channel data rate and achieved data rate, making the

Fig. 3. The requested bitrate class distribution.

download of a segment faster or slower than expected. The
dataset created for the validation of our prediction approach
excluded these empty Wpred windows wherein nothing is
predicted.

To summarize, the prediction problem formulation is to
predict next bitrate, for each client, every Wpred , using as
input the features in Wagg . The overall complexity of the
prediction task scales linearly with the number of clients in
the network. However, since the prediction task for each client
can be run independently, it can be parallelized to run over
distributed compute resources.

B. Proposed Solution Using Machine Learning

We use a supervised learning approach and model the learn-
ing problem as a multi-class classification problem, with each
class being one of the 6 available segment bitrates. The range
of values available for bitrate varies between implementations.
The set of available bitrates for each segment and hence the
categorical outcomes are {1, 2.5, 5, 8, 16, 35} Mbps, with the
higher rates corresponding to HD, 2K, and 4K video quali-
ties, respectively. Fig. 3 shows the histogram of occurrences
of bitrate in the training dataset for each class. We note that
while there is some class imbalance between the six classes, it
is not high and hence better for us to use the dataset with its
existing class distribution without the need for imbalance han-
dling methods. Note, that the cost of misclassification from any
class to any other class has the same impact on our approach
and hence it is not important to study the impact of class
imbalance.

We explore both ensemble tree-based classical ML mod-
els as well as neural network based models. We use Random
Forest (RF), Gradient-Boosted trees (XGB), multi-layer per-
ceptron (MLP) and Long-short term memory (LSTM). RF is
a method used in prior research in this domain with good
results [15], [16]. We explore gradient-boosted trees [17] due
to their consistently good performance over structured tabular
data [18]. We observed in our scoping review (Section VII)
that tree-based approaches constitute the family of most used
methods, in part due to fast training and with few hyper-
parameters to tune. They also have the advantage of being
explainable, via feature importance. While expensive without
much benefit given small datasets, deep neural network models
can be pre-trained using, e.g., simulation data and then through
transfer learning tuned to the varied scenarios in which they
are deployed. These advantages motivated us to explore their
efficacy and compare them against RF and XGB. The data
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TABLE II
ARCHITECTURE AND HYPERPARAMETERS USED FOR THE M MODELS

TRAINED TO PREDICT NEXT SEGMENT BITRATE

we have is time series and LSTM is an approach designed
to natively handle such data through its recurrent network
architecture. LSTM models, however, have a large number of
parameters, require even larger datasets to learn from, and are
relatively opaque.

Table II lists the architecture and hyperparameters used in
our models. We observed that the results of the model were not
very sensitive to hyperparameter tuning and hence a detailed
analysis has been left out of the paper. We have made the
dataset used and all the code open-sourced [19] to enable
reproducibility.

Baselines: To test the value of our ML model we use a per-
sistent prediction baseline (Baseline 1), where the next bitrate
is predicted to be the same as the previous one. Such an indis-
criminate predictor baseline for time series data is commonly
used to assess the additional prediction power over a simple
low-complexity one. Such a naive prediction could be use-
ful for slow-changing networks. However, in real networks
under dynamic conditions, the bitrate is frequently changing
and hence more challenging to predict.

Additionally, to have a fair comparison of our work with
existing work we need to evaluate our approach with work
that has been conducted in a setup with a similar architecture
where application level predictions of one step ahead seg-
ment bitrate are made at the edge. We use the recent work
of Kheibari and Sayýt [20] who have used an LSTM model
to obtain segment bitrate predictions with the same number of
bitrate classes as in our evaluations. They use the same DASH
application metrics as we do with a one segment history. In
our work, in addition to this we also incorporate radio met-
rics from the base station to provide additional cross-layer
monitoring information that could increase the information
in the data about client’s perceived channel bandwidth. This
result from [20] provides a baseline with which we compare
our work. They report results with a prediction accuracy of
70% when using an LSTM model, which we use as a second
baseline for our evaluations (Baseline 2).

III. APPROACH: SEGMENT REQUEST PREFETCHING

A. Problem Statement

As shown in Fig. 4, our envisioned mobile network is
composed of a 5G Core and multiple gNBs, with gNBs collo-
cated with MEC servers. The MEC servers are characterized

Fig. 4. Sample mobile network model, user request model, and video segment
prefetching.

by processing, memory, and storage resources. While these
resources are scarce at the edge they become abundant as we
draw near the core. Consequently, resource provisioning at the
core becomes much cheaper than that of the network edge,
though the former imposes higher transport network usage.

We assume that at any given time, a set of requests will be
issued from the users asking for a set of segments, possibly
in different bitrates. The ML model proposed in Section III
is responsible for predicting bitrate of the video segments.
After obtaining prediction outcome from the ML model, the
prefetching method (i.e., ILP or heuristic) decides whether to
prefetch the predicted video segment(s) in specific bitrates to
the network edge or, if available, to transcode a higher bitrate
segment available at the network edge to make sure that the
expected bitrate of the user is satisfied while network resources
are used properly.

Depending on the segment duration, segment bitrate, and
availability of the substrate network resources, there might be
multiple prefetching alternatives, each in favor of optimizing
certain aspects of the network. The problem of joint video
segment prefetching, transcoding, and resource allocation is
formally articulated as follows.

Given: a 5G network composed of MEC servers collocated
with gNBs and the 5G Core, interconnected through backhaul
transport network links. And a set of users that are associ-
ated with gNBs, making video segment requests each in a
specific bitrates.

Find: joint video segment prefetching, transcoding, and
resource allocation.

Objective: maximize (i) the cache hit ratio and (ii) the
byte hit ratio. We define the cache hit ratio as the number
of requests served from the edge (whether directly from the
same gNB, from neighbor gNBs, or using transcoding) divided
by the number of requests issued to the network. Similarly, the
byte hit ratio is defined as the number of bytes served from
the edge divided by the total number of bytes requested by the
users.

B. Mobile Network Model

Let G = 〈N ,E 〉 be an undirected graph modeling the
mobile network, where N represents the set of computing
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TABLE III
MOBILE NETWORK PARAMETERS

nodes, which is the union of MEC nodes M and the 5GC
C, N = M ∪ C . E represents the set of backhaul and Xn
links, interconnecting the gNBs/MEC with the 5GC and MEC
nodes with each other, respectively. As already mentioned,
MEC nodes are collocated with gNBs, and MEC nodes are
characterized by storage stg (n) and processing capacity cpu
(n). While storage resources are used to cache video segments,
processing resources, if needed, is used to transcode video
segments from a high bitrate h to a lower bitrate q (i.e., the
one predicted to be requested by the user). There is a link
em,n ∈ E between the nodes m,n ∈ N if they are directly
connected, which has a certain amount of bandwidth denoted
by btw(e). V represents the set of videos available to the users.
Each video v ∈ V is divided into multiple segments S v ,
each of which s ∈ S v is available in multiple bitrates Qv ,s .
Table III summarizes the parameters of the mobile network.

C. User Request Model

Fig. 4 depicts a sample video caching mapping in which a
group of users are associated with gNBs and making requests
for their desired video segment bitrate. User requests are mod-
eled as a directed graph Ḡ = 〈R,L〉, where R is the union
of users and their requested bitrate for a specific video seg-
ment, and L represents the virtual links between users and
their requested bitrate. It is possible to have multiple requests
from the same user at any given time and br(r) represent the
bitrate of a request from the user. Table IV summarizes the
notations used for the user requests.

D. Problem Formulation

The joint video segment prefetching, transcoding, and
resource allocation problem is similar to the Virtual Network
Embedding problem, which is proven to be NP-hard [21]. Our
proposed method solves the problem in two steps: (i) con-
tent embedding on the nodes and (ii) link embedding for
accessing remote contents. In the content embedding step,

TABLE IV
UE REQUEST PARAMETERS

TABLE V
BINARY DECISION VARIABLES

each video content (e.g., UEs and video segments) in the
request is mapped to a substrate node (e.g., gNBs and MEC
nodes). In the link embedding instead, each virtual link can
span multiple phsyical links to establish a path from the UE
to the video segment. What comes below formally presents
our proposed methods for tackling the joint problem of video
content prefetching, transcoding, and resource allocation. First
we detail our proposed ILP model for tackling this problem
and later we present a heuristic algorithm to approximate the
optimal solution obtained by the ILP model.

1) Proposed ILP Model: ILP technique is used to formu-
late the described content placement problem that has two
objective functions. These two objective functions are differ-
ent, and each follows a different logic, but they both have the
same number of constraints that should be respected for the
model to reach a valid solution. While the first objective (1)
tends to maximize the cache hit ratio, the second (2) max-
imizes the byte hit ratio. Table V summarizes the variables
used in the ILP model.

In both objective functions, we have the parameter αr
m ,

which is responsible for assigning a profit/utility to a place-
ment solution. The value of α is fixed at prior in the range
of 1 to 5 and does not depend on the network condition. The
value for each solution is selected based on the order described
below. There are multiple ways to increase the cache hit ratio,
and each of them has a certain profit/utility, and αr

m is respon-
sible for associating a profit/utility to each of the mapping
options. The more distant a segment is from the user, the more
unlikely it is to be used by that user. Therefore, αr

m gets a
higher value when the content is closer to the user.1 When
a user requests a video segment(s) with a specific bitrate,
if the content is already cached/available at the edge, then

1The value of αr
m can be tuned arbitrarily, for instance, can be derived

from other metrics such as latency, cost of resources, etc.
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it can be served either from the MEC node collocated with
the associated gNB or from a neighbor MEC node leverag-
ing the Xn interface. In such a case, αr

m gets higher values
of 5 and 4, respectively. Suppose the desired bitrate of the
requested segment does not exist in any of the MEC nodes
while higher bitrates of the same segment are available. In
this case, these segments can be transcoded to the ultimate
desired bitrate/quality. Similarly, here αr

m gets a value, and it
is our next preferred solution since we are still serving the user
from the edge (for local transcoding α = 3, and for transcod-
ing on neighboring MEC nodes α = 2). And finally, αr

m gets
the lowest value (α = 1) when the content is served from the
main video server since it is more distant to the user compared
to other solutions and indirectly incurs more latency and link
utilization.

CacheHit : max

⎛
⎜⎜⎝
∑
r∈R

∑
m∈M

∑
h∈Qr

h≥q

αr
mχr ,h

m

⎞
⎟⎟⎠ (1)

The second objective function (2) aims to maximize byte hit
ratio. This objective is particularly beneficial for storing videos
with high storage demand at the edge, and depending on the
prediction performance it can result in backhaul utilization
improvements. br(r) returns the bitrate value of a segment with
a specific quality that the user requests. With this parameter,
we aim to force the objective to prefer bulky-sized segments
over small-sized ones when deciding on prefetching.

ByteHit : max

⎛
⎜⎜⎝
∑
r∈R

∑
m∈M

∑
h∈Qr

h≥q

αr
mχr ,h

m br(r)

⎞
⎟⎟⎠ (2)

In the following, we present the constraints that, regardless
of the objective function, have to be satisfied in order for the
model to obtain a valid solution. The first constraint ensures
that the storage used for storing segments on a node is less
than or equal to the maximum storage capacity available on
that node.

∀m ∈ M :
∑
v∈V

∑
s∈Sv

∑
q∈Qv,s

χv ,s,q
m br(q)τ ≤ stg(m) (3)

At any given time, each users that makes a request, should be
provided with the video segment in the requested bitrate.

∀r ∈ R :
∑
n∈N

∑
h∈Qr

h≥q

χr ,h
n = 1 (4)

Constraint (5) ensures that the virtual links (links between
users and their requested video segment) are mapped on a
substrate link as long as the link has sufficient capacity.

∀e ∈ E :
∑
ē∈L

χē
ebr(ē) ≤ bwt(e) (5)

Constraint (6) enforces a continuous path to be established
between each user and its requested bitrate of the video seg-
ment in the virtual request r ∈ R. This constraint makes sure
that when a user cannot be served from its local MEC server

but is served from a neighboring MEC server or the main video
server, then there should be transport bandwidth assigned to
it, and a route from the user to the selected remote serving
node should be established.

∀k ∈ N , ∀em,n ∈ L :

∑

e∈Ek→
χem,n

e −
∑

e∈E→k

χem,n

e =

⎧⎨
⎩

−1 if k = m
1 if k = n
0 otherwise

(6)

where E k→ represents the links originating from node k ∈ N ,
while E→k represents all the links entering node k ∈ N .

Finally, constraint (7) makes sure that the number of
CPU cores utilized for transcoding video segments in bitrate
h ∈ Qr to the lower desired bitrate q are not higher than
number of CPU cores available on that edge node. It is worth
mentioning that the model decides to transcode a segment
when caching space at the MEC server is not enough to store
a new segment request. In such a case, it is possible to serve
the request by converting a higher-quality existing segment to
a lower-quality one on the same MEC server without needing
to store it. For instance, consider two users (UE1 and UE2)
requesting the same segment (same segment ID) but in dif-
ferent bitrates. UE1 asks for the segment in a higher bitrate,
and UE2 asks for the same segment but in a lower bitrate.
Also, in this scenario assume we do not have enough cache to
store both of these segments, but we can afford to store one of
them. In such a case, we can fetch the higher-bitrate segment
to the edge and use the cache storage to store it and serve
UE1 and then transcode the same segment to convert it to a
lower bitrate and serve UE2 as well. With this strategy, we
could meet both requests directly from the edge, one through
the cache and the other via transcoding.

∀m ∈ M :
∑
r∈R

∑
h∈Qr

h>q

χr ,h
m ∗ cpu(h, q) ≤ cpu(m) (7)

2) Proposed Heuristic Algorithm: Although our proposed
ILP model achieves an optimal solution under different
network configurations, the problem becomes computation-
ally intractable as the network size grows, meaning we have
more nodes, users, videos, and segments in the network.
We address this problem by proposing a heuristic algorithm
(see Algorithm 1) that is capable of attaining a near-optimal
solution for the joint problem of video segment prefetching,
transcoding, and resource allocation in a considerably shorter
time scale compared to its ILP-based counterpart model, even
for very complex network configurations.

Our proposed heuristic, called Heu cache_hit , pursues the
same objective of maximizing cache hit ratio for the video
segments. Although our presented algorithm only follows the
objective of maximizing cache hit, it can easily be tuned to
pursue the objective of maximizing byte hit by sorting requests
based on bitrate in ascending order and then giving them as
input to the algorithm. Similar to the ILP cache hit algorithm,
Heu cache_hit uses the αr

m parameter to assign profit/utility
to embedding options before running the algorithm. After
obtaining prediction results, we have a pre-processing proce-
dure that calculates profit/utility value (αr

m ) for requests from
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Algorithm 1: Heu cache_hit
Input: (G, Ḡ)
Output: (video, segment, bitrate) prefetching, transcoding, and resource allocation

;
1 for r ∈ R do
2 q ← br(r) ;
3 m ← gnbAssociation(r) ;
4 • Computing profit/utility value αr

m for request r ;
5 • S ← Sorting requests based on the value of αr

m in descending order and
return tuple of the request and preferred node to list ;

6 for h,n ∈ S do
7 if alloc[r , h,n] == 1 then
8 if n �= m and btw(n,m) > br(r) then
9 • Allocate path Pn,m and update resources;

10 • Allocate (h,n, r) and update resources;
11 break;

12 else
13 if stg(n) > br(r) ∗ τ then
14 if h > q and cpu(h, q) < cpu(n) then
15 if n �= m and btw(n,m) > br(r) then
16 • Allocate path Pn,m and update resources;

17 • Allocate (h,n, r) and update resources;
18 cpu(n)← cpu(n)− cpu(h, q) ;
19 break;

20 else
21 if n �= m and btw(n,m) > br(r) then
22 • Allocate path Pn,m and update resources;

23 • Allocate (h,n, r) and update resources;
24 break;

users. Based on the gNB association of a user, we calculate a
value for αr

m in the following way. The highest αr
m value for

a user is the MEC node directly connected to its associated
gNB. The second-highest value is assigned to a solution that
decides to transcode a high bitrate segment to a lower segment
on that local MEC node. The idea behind prioritizing serving
users from their local MEC node is that we can avoid con-
suming transport links and avoid unwanted transport latencies
by serving a user from a local MEC node. The third-highest
value will be assigned to the neighboring MEC nodes that
host the required video segment. Finally, the smallest value
will be assigned to the case a video segment is transcoded on
the neighbor MEC nodes. It is worth mentioning that the pol-
icy for setting values for αr

m is completely dependent on the
service provider and can easily be tuned and adapted based
on the desire.

What follows explains the details of the proposed heuristic.
The algorithm considers each predicted request to be issued
during the next time window, extracting its predicted bitrate q
and the MEC node collocated with its associated gNB g. We
remind the reader that video, segment, and bitrate are inher-
ently included in the request r. The heuristic then calculates
the profit/utility parameter αr

m for each request based on the
UE-gNB association and sorts them in descending order. This
is followed by traversing all the bitrates and nodes as possible
solutions in the sorted list of the profit/utility parameter αr

m .
The alloc is an array to store embedding decisions. If a can-
didate solution has already been embedded on the substrate
network, indicated by alloc[r, h, n] == 1, then the UE will
be served from the same video segment on the same node
without prefetching a new segment. If the desired segment is
on a node different from the hosting MEC, then a path will

be established between the hosting MEC node and the node
serving the desired segment if the physical links on the path
have sufficient capacity.

In case a segment at the requested bitrate is missing on
the hosting MEC node, the algorithm checks for computing
capacities available on the node in order to perform transcod-
ing operations. If transcoding is chosen as the solution to
serve the user (line 14), the allocation variable alloc will be
updated, and computing resources will be updated accordingly.
Finally, if none of the already existing solutions are chosen
for the request, the new segment with the new bitrate will
be prefetched, and a path from the requesting user will be
allocated in order to reach the segment (lines 22 and 23).

As we demonstrate later in Section VI, the execution time of
the algorithm stays linear as the problem size grows. Overall,
the time complexity of the algorithm is T (c1RNQ+c2RNQ),
where c1 and c2 are constants and negligible, R is the number
of requests, N is the number of nodes in the network, and Q is
the number of qualities/bitrates available for the video segment
requested by the user. Therefore, the time complexity of the
algorithm is of order O(RNQ). Note that, for each request, the
video ID and segment ID are known beforehand, and we do
not need to loop over different videos and segments.

IV. DATA GENERATION AND PROCESSING

A. Simulation Setup for Data Generation

An ns-3 [13] simulated network is used to generate data
to train and validate the prediction models, and to evalu-
ate the prefetching algorithms. We generated two datasets
(available at [19]) from a simulated urban mobile network
deployment scenario similar to the scenario described in the
3GPP report [22]. We use the ns-3 DASH module implemented
by Vergados et al. [23] to simulate the DASH client-server
interaction for video segment requests and response. The ABR
algorithm implemented on the DASH clients (FDASH [24])
uses both network bandwidth and buffer occupancy information
to select the bitrate of the segments requested. The set of avail-
able bitrates are {1, 2.5, 5, 8, 16, 35} Mbps. Each DASH
client implements a video buffer of 30 MB. It is important to
emphasize here that our approach can handle any ABR at the
client, as long as it can be trained on that data.

Our simulation setup consists of LTE base stations and
UEs since at the time of generating this dataset there were
limitations in ns3-5G modules. However, our work is fully
applicable to 5G and beyond networks. The simulation setup
consists of 12 base stations (four cell sites with three gNBs
each), and uses carrier aggregation with three component car-
riers of 20 Mhz (100 physical resource blocks) to provide
a maximum downlink bandwidth of 60 Mhz (300 physical
resource blocks), which can reach a maximum downlink data
bandwidth of up to 225 Mbps. The actual data rate that a
user receives from the gNB is dynamic and varies as the sig-
nal quality varies as it moves within and between cells. It also
varies depending on the number of users the channel is shared
with and their request patterns. A remote server hosts the
DASH video server. Mobile users, between 27 to 68, depend-
ing on the simulation instance, move between these gNBs.
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The user movement is dictated by the random waypoint mobil-
ity model with velocities samples from a uniform distribution
between 1.4 - 5.0 m/s (walking/cycling speeds).

Each user in the network is watching one of the 10 live
videos being streamed. These videos are generated by the ns-3
DASH component by inserting random bits to create segments
of the defined duration and at defined bitrates. The start time
of requests for each user are staggered to be within a short
time range of 10 seconds. This is done to create the random
time differences between the beginning of segment requests
by various clients.

The frame rate is 50 frames per second and the seg-
ment duration is 8 seconds. This choice of segment size
was informed by the range used in current implementations
which range from 2 seconds (for e.g., in Microsoft Smooth
Streaming) to 10 seconds (in Apple HTTP Streaming). While
shorter segments give lower latency, longer segments give
better throughput.

We generated over 26,000 seconds (7.2 hours) of data
from the simulation. On separating video playback data per
client (between 27 and 68) we have 1.2 million seconds (14
days) of video streaming data. On pre-processing the data as
described in Section IV-B into windows, we get 117,000 sam-
ples. We use 80,000 samples to train the ML models, and
20,000 samples to validate the trained models. On obtaining a
validated ML model for expected segment bitrate prediction,
we evaluate the entire approach of predicting, prefetching
and caching. We evaluate this by using 17,000 test samples,
unseen during training or validation. These test or evalua-
tion samples are used to make bitrate predictions and evaluate
the approach by comparing the decision of the prefetching
and caching, with the ground truth of what segment gets
requested after the prediction and prefetching is made. Our
evaluation was conducted in an offline manner to circum-
vent the lack of implementation of the needed architectural
components in ns-3.

While the size of the topology used in our simulation is
small, it is scaled down to create a dataset that is still rep-
resentative of the problem for which we propose a solution.
Through the randomized deployment of users in the topology,
varying number of clients per basestation, and user mobility,
we create network states where the DASH clients are exposed
to varying degrees of saturated and unsaturated network states
as well as signal qualities as indicated by the histogram of
segment bitrates achieved by the clients as shown in Fig. 3.
By creating a representative scenario with a smaller number
of users, we are able to simulate a much larger dataset that
captures data from a longer duration of simulation time.

B. Data Preprocessing

All the cross-layer monitored metrics we consider as input
to the ML model are time series quantities observed with dif-
ferent periodicities. Some are sample metrics (like RSRP),
wherein we have a value for every observation, while others
(like MAC throughput) can only be measured over windows.
To reconcile these differences in how metrics are observed, we

TABLE VI
PREDICTION ACCURACY USING RF OVER VARYING AGGREGATION

AND PREDICTION WINDOW SIZES

Fig. 5. Histogram of the time between segment requests and the throughput
achieved during the download of a segment at the clients.

aggregate them over time windows (Waggr , the metrics aggre-
gation window) to generate a structured tabular dataset. Since
the data is a time series, there is time correlation between
samples of input metrics. Since we are predicting the bitrate
of a segment of 8 seconds of video, small time correlations
do not impact the output much and can be averaged over,
as we have done using Waggr . The choice of Waggr size
should be informed by the rate of change of state in the radio
network. The trade-off here is between too little information
in small windows and too stale information in large windows.
The motivation for our choice of Wpred has been discussed
in Section II-A.

The results of our empirical evaluation of varying window
sizes is presented in Table VI. We compare the sizes using the
prediction accuracy obtained using a random forest model and
chose Waggr to be 16 seconds and Wpred to be 2 seconds. We
obtain the similar order of results for all models we explore
and have hence presented the results from one model with the
results available in an appendix on our GitHub [19].

The scripts for data generation, the raw and pre-processed
data, the ML and prefetcher scripts are all made open source
for repeatability [19].

V. EVALUATION: VIDEO SEGMENT PREDICTION

A. Exploratory Data Analysis

Understanding the variability in our dataset: We begin by
presenting some statistics that represent the dataset we have
generated. The average time between segment bitrate changes
in this dataset is around 23 seconds, and the fraction of seg-
ments that represent a change in bitrate is 34%. These numbers
indicate that there is a significant rate of change of bitrate in
the dynamic environment created to justify the evaluation of
our prediction approach. Fig. 5 contains the histogram of the
time between segment requests at the DASH clients. By set-
ting the prediction window size at 2 seconds we capture most
of the probability mass from this distribution which means that
there will be very few instances where a client requests for
more than one segment that has been prefetched withing the
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Fig. 6. Correlation coefficient heatmap between input and output features.

prediction window time. Fig. 5 also contains the histogram of
the throughput achieved during the download of a segment.
This histogram shows the variation in the channel quality
as experienced by the clients due to mobility and contention
between users. We see that the probability mass is aggregated
around the 10 Mbps value, and is distributed between 0 to
over 60 Mbps showing that the available download datarate
varies in a significant range and can support the use of the
maximum segment bitrate in our scenario of 35 Mbps. The
statistics and histograms discussed here, show the extent of
network variability in our scenario and justify the choice of
Wpred window size.

Understanding the correlations in our dataset: To under-
stand the relationship between input features, as well as
between the input and output features, we plot a heatmap of
the Kendall correlation coefficients between them as shown
in Fig. 6. The bottom row, next bitrate, represents the out-
put feature, and the rest are input features. This Kendall
score captures the strength of the monotonic relationship
between variables. It is a rank-based metric and preferred over
Spearman because it is better at handling rank clashes. We
see several strong correlations between the input and output
features, indicating a signal for predictive power. We also see
strong correlations between input features themselves, indicat-
ing some co-variation among variables and hence redundancy
in the features.

B. Model Evaluation

The input features available in our dataset can be catego-
rized as RAN metrics and DASH application metrics. We study
the impact of each feature set by evaluating the behaviour of
the ML model on three different sets containing 1) DASH and
RAN metrics, 2) only DASH metrics, 3) both DASH and RAN
metrics but no historical information of last bitrate. Feature set
1) includes all features observed, feature set 2) removes RAN
features to see how much the addition of RAN observability

Fig. 7. Comparison of model performance for the three bitrate prediction
tasks. Prediction accuracy increase is around 20% from both baselines shown
as black solid and dashed lines.

adds to the prediction signal, and the feature set 3) is used to
assess the reliance of the model on information from the last
sample of bitrate.

Fig. 7 shows the results of evaluation over RF, XGB, MLP,
and LSTM models for each of the three different feature
sets. We use prediction accuracy as the metric for comparison
between models and the baselines. Accuracy metric is defined
as (true positives + true negatives) / total predictions. This was
chosen to compare models since, from the perspective of the
prediction model, the cost of misclassification between classes
is considered the same in the considered scenario. We see that
our models improve over both the simpler Baseline 1 as well
as Baseline 2 from recent work, with a prediction accuracy
increase of around 20%. The network scenario and dataset
considered in the work of Baseline 2 has low network dynam-
ics with a rate of change of segment bitrate of less than 10%.
In comparison our network scenario is more dynamic with seg-
ment bitrate changes at 34% of the total stream. This results
in our model being a stronger predictor in more dynamic
networks. We also see that all the models considered have sim-
ilar performance with a difference of at most 3% in prediction
accuracy.

The minor difference in accuracy when using DASH+RAN
features and only DASH features, indicates that the con-
tribution of RAN features over DASH features is small.
Comparison between DASH+RAN and DASH+RAN-last
segment history, also indicates that there is redundancy in the
features that can contribute to prediction, even when the last
segment value for bitrate is not available. This is important
because it shows that the model can learn to predict bitrate
in a non-trivial way using the network and application state,
even when the new bitrate is not correlated with the previous
bitrate. This improvement over the baselines is expected to
be even higher in more dynamic networks, where the rate of
change of network state is even higher, resulting in a lower
correlation between requested bitrates.

Fig. 8 shows a plot of the normalized confusion matrix for
RF and MLP as a heatmap. The maximum difference between
the true positives between bitrate classes is at most 21% for RF
and 14% for MLP. This shows that we are not much better at
predicting one class compared to others, and that the prediction
power is fairly distributed over classes. It also indicates that the

Authorized licensed use limited to: Universita' Politecnica delle Marche. Downloaded on July 24,2023 at 08:35:55 UTC from IEEE Xplore.  Restrictions apply. 



BEHRAVESH et al.: MACHINE LEARNING AT THE MOBILE EDGE: THE CASE OF DASH 4789

Fig. 8. Ground truth normalized confusion matrix for RF and MLP
predictions.

Fig. 9. Feature importance for different sets of metrics.

minor imbalance in the classes has not affected the prediction
power of the classes. The type-1 and type-2 errors are both
small and symmetric between classes. This would be a pos-
itive trait of the predictions if type-1 and type-2 errors have
different costs, i.e., our approach handles the misclassifying
as a lower bitrate as different from the misclassification as a
higher bitrate. This is a positive aspect to note if in future
work these misclassifications are handled differently.

One of the advantages of RF or XGB is their inherent
model interpretability through observable feature importance.
Fig. 9 shows the feature importance graphs for XGB for
DASH+RAN, and the DASH+RAN-last segment history fea-
ture sets. We omit the graph for RF since the order of features
remains the same and XGB feature importance shows the
additional contribution of each feature over the previous, as
opposed to RF, where multiple redundant features are shown
to have the same importance. When Last bitrate is available,
it seems to be the most important feature. This makes sense
since the persistent prediction baseline (Baseline 1) by itself
gives us close to 70% accuracy. However, with that history
removed, we still get similar accuracy but the contribution of
the features as indicated by their importance is distributed over
all other existing features. This shows that even when the rate
of change of bitrate is high, the model can predict without the
assistance of Last bitrate.

C. Discussion

While all four models have similar performance, with a
prediction accuracy increase of around 20% over both the
baselines, employing different feature sets taught us that the
models are able to learn to predict changes in bitrate, with-
out the history of previous bitrate from the last window.

The decision tree-based RF and XGB have the advantage
of interpretability, while the neural network models have the
advantage of transfer learning and generalizability. We see that
using LSTM did not offer any advantages in this scenario over
a much simpler MLP. This could be because of the much larger
number of trainable parameters in an LSTM model, which
requires a larger dataset to train on.

It is important to note that while the implementation of the
number of bitrates over which the DASH server can encode a
given segment is fixed in our evaluations, this could be varied.
The machine learning model could be readily adapted in such
a scenario by retraining on this different number of bitrate
classes while keeping the rest of the approach, leaving the
prefetching algorithm unchanged.

VI. EVALUATION: SEGMENT REQUEST PREFETCHING

This section elaborates on the simulations carried out
in Python using the Gurobi mathematical optimization
solver [25]. The evaluations regarding the ILP-based model
and the heuristic algorithm consider the following additional
evaluation parameters. The 5GC node, where the DASH video
server runs, is equipped with a 16-core 2.4 GHz processor. The
edge MEC servers are equipped with a 4-core 1.6 GHz proces-
sor with varying cache storage of {25, 50, 75, 100, 125, 150}
MB. The caching storage is assumed to be very limited
since resources at the edge are extremely scarce and shared
among a diverse set of applications that are running at the
edge. Moreover, computing resources at the edge are usually
reserved for applications with stringent demands in terms of
latency, leading us to assume that we are pretty limited in terms
of caching space at the edge dedicated for live video stream-
ing. The edge MEC nodes are interconnected over 5 Gbps
Xn links, which are also used to transfer video segment data
along with exchanging control information. The MEC nodes
are connected to the 5GC over a 20 Gbps backhaul link.

The prefetching algorithm (ILP or heuristic) runs periodi-
cally every 4 seconds, in what we call a prefetching time slot.
In each prefetching time slot, the Decision Maker submodule
(described in the system architecture) at the 5GC obtains the
segment/bitrate predictions for all the UEs from the Predictor
component at the MEC, which then assembles all prefetching
requests. A request encompasses four items: video ID, seg-
ment ID, bitrate, and gNB association of the UE. The job of
the prefetching algorithm is to find solutions that can serve
predicted requests. The ILP and the faster heuristic still take
a finite amount of time to run. However, the prefetching time
slot is always longer than the time to run the algorithm to
ensure that the requests from one slot are fetched before the
beginning of the next slot.

The predicted requests can be served by either prefetching
the requested segments to the edge, transcoding an existing
segment at the edge, or skipping the cache and waiting for
the video server in the 5GC to serve the actual request. There
are two cases in which a user will be served from the central
video server in the 5GC: (i) the prefetching algorithm decides
that the user is to be served from the main video server due
to the optimization decisions (i.e., lack of storage resources at
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Fig. 10. Cache hit ratio for different cache sizes.

the edge), (ii) due to prediction error, a wrong segment bitrate
is prefetched and the requested bitrate is not at the edge, then
the user again should be redirected to the main video server
in the 5GC.

The caching system at the MEC node uses a simple Least
Recently Used (LRU) replacement strategy for content man-
agement. The Cache Manager informs the Request Handler
about the cache status and the requests that can be served from
the edge, and it frees up cache space if needed by discarding
any other segments based on the LRU algorithm.

The reported results are the average of four simulation
experiments with 95% confidence intervals, where each simu-
lation runs for 1000 seconds. In other words, if we consider the
duration of 4 seconds for each segment, then with each exper-
iment, we repeat the tests 250 times (1000 times overall). A
varying number of requests are issued during each simulation
run, and the prefetching algorithm is responsible for making
an intelligent decision to embed the requests on the network.

Cache hit ratio: As stated earlier, a request can be served
from the edge in multiple ways. The first solution is to serve
the request directly from the MEC node collocated with the
gNB that the UE is associated with, and it can be served either
by the exact bitrate stored at the MEC node or by transcoding
a higher bitrate segment to the target bitrate. The second solu-
tion is to serve the request through the neighbor MEC nodes
with the same methods. We define the cache hit ratio as the
ratio between the number of users served from the edge to
the overall number of users. We argue that the higher cache
hit results in higher satisfaction for both the end-users and the
MNO. While users experience less delay, less jitter, and higher
bitrate, MNOs can offload backhaul to a large extent.

Here we study the cache hit ratio under different cache sizes.
It can be observed that increasing cache size results in a higher
cache hit ratio. Therefore, we aim to study the impact of the
cache hit ratio in different network configurations. It is worth
mentioning that we decrease the cache size to a large extent
to show the system’s different behaviors for testing purposes.

As shown in Fig. 10, the average cache hit ratio with dif-
ferent cache sizes is higher for the ILP Cache-hit algorithm
compared to the other two algorithms. As expected, the ILP
Cache-hit achieves the highest cache hit ratio due to the sig-
nificance of the number of hits in the objective function. The
proposed heuristic algorithm also demonstrates a satisfactory
level of performance and attains a cache hit ratio close to
the ILP counterpart. The superior performance of the ILP

Fig. 11. Byte hit ratio for different cache sizes.

Cache-hit becomes obvious when the cache storage is very
limited and all the predicted segments cannot be accommo-
dated at the MEC nodes. Therefore, this is a scenario where
ILP Cache-hit can make more intelligent decisions than ILP
Byte hit and Heu Cache-hit methods in selecting a set of seg-
ments and bitrates to be prefetched, leading to the maximum
cache hit. Although increasing the cache size may lead to
a scenario in which we can accommodate all the predicted
segments at the edge, making prefetching decisions straight-
forward for all the methods to prefetch whatever is predicted
and achieve a high cache hit ratio. Even in such a scenario, we
experience some cache misses due to the wrong predictions
from the ML-based prediction model.

Byte hit ratio: Similar to the cache hit ratio, we also study
the byte hit ratio for the proposed methods. Obviously, with
the more bytes served from the edge, the more savings over
the backhaul link can be achieved. With this performance met-
ric we intended to depict the ratio between the number of
bytes served from the edge and the overall number of bytes
requested. Therefore, we expect the ILP Byte-hit to perform
better than the other ILP Cache-hit and Heu Cache-hit in
prefetching higher bitrate segments that can be shared among
multiple UEs at the edge to save the bandwidth. Another
advantage of prefetching high bitrate segments is that a higher
bitrate segment can be transcoded to the lower bitrate segments
and avoid redirecting requests for low bitrate segments to the
core and serve more users from the edge.

As illustrated in Fig. 11, the number of bytes served from
the edge for the ILP Byte-hit algorithm is more than both ILP
Byte-hit and Heu Cache-hit algorithm. We can observe that
the ILP Byte-hit method shows a better performance than the
other algorithms when the cache size is smaller since it tends
to prefetch high bitrate segments compared with other meth-
ods that do not consider the size of segments as a factor in
the objective function. As the figure depicts, the ILP Cache-
hit shows a relative performance to ILP Byte-hit because it
can prefetch more segments, increasing the number of served
bytes but still being less than the ones achieved by ILP Byte-
hit. As expected, heu Cache-hit also achieves a comparable
performance to what is achieved by ILP Cache-hit. Even
though ILP Byte-hit objective achieved a higher byte hit, in
case the prediction results are not correct, its performance sig-
nificantly degrades as it soon saturates storage at the edge with
bulky-size wrong segments and does not leave space for other
segments to be prefetched.
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Fig. 12. Backhaul link utilization for different cache sizes.

Link utilization: Fig. 12 illustrates the backhaul link utiliza-
tion as a function of cache size, averaged over four simulation
experiments, where each of them runs for 1000 seconds. We
have evaluated our proposed algorithms and compared them
with the baseline in which all the segments are served from
the main video server in the 5GC. Therefore, no prefetching
is performed with the baseline, meaning all video segments
are served directly from the 5GC and transferred through the
backhaul. As can be observed from the plot, Heu Cache-
hit and ILP Byte-hit achieve, respectively, the highest and
the lowest backhaul link utilization compared with the base-
line. This is justified by the fact that ILP Byte-hit tends to
prefetch high bitrate segments that might be shared among
multiple requests at the edge. Therefore, a smaller portion
of high bitrate requests must be directed to the main video
server; consequently, a significant load on the backhaul is mit-
igated. It is worth noting that even though for large cache sizes
(i.e., 150 MB) on each edge node, we have enough aggre-
gated capacity to host all the requested video segments at the
edge, we still have around 20% of backhaul utilization. Such
behavior stems from the fact that we have a few wrongly pre-
dicted requests in each run; therefore, our proposed system
at the edge redirects such cases to the main video server in
5GC, leading to backhaul consumption. Fig. 12 reveals that
our proposed ILP-based methods save up to 60.91% of the
backhaul compared to the baseline. Although these results are
obtained under large cache sizes, they still perform satisfac-
torily even with very limited cache sizes (see the cases of 25
to 100 MB). Regarding the heuristic algorithm Heu Cache-
hit, which follows the same objective as the ILP Cache-hit,
it shows a slightly lower performance but quite close and
comparable to its ILP-based counterpart.

Execution time: The main intention behind proposing our
heuristic algorithm (Heu Cache-hit) is to combat the scalability
issue of the ILP Cache-hit model, which becomes compu-
tationally intractable as the network size increases, meaning
the network includes more videos, more segments, and more
unique requests from the users. Fig. 13 demonstrates the exe-
cution time of the proposed algorithms averaged over four
experiments. As expected, our execution time remains con-
stant both for the ILP models and the heuristic. The reason
is that our model aggregates individual users by their access
gNB, so the number of decision variables does not grow. In
other words, our model considers users that come from the
same gNB and ask for the same segment on the same bitrate

Fig. 13. Execution time for different cache sizes.

as one request. We claim that with the increase in the number
of nodes, videos, and bitrates, the problem becomes intractable
for the ILP models, and they cannot scale properly; thus, the
heuristic algorithm Heu Cache-hit is proposed to address this
challenge. We observed in the previous results that the Heu
Cache-hit exhibits lower performance compared to its ILP
counterpart in terms of the cache hit ratio, byte hit ratio, and
link utilization, but it proves to be competitive and also much
quicker in terms of execution time, which makes it applicable
to large-size networks in real-world scenarios.

VII. RELATED WORK AND CONTRIBUTION

A. ML Prediction

Prediction for RANs is especially challenging due to
the continually changing conditions of the physical chan-
nel, and the availability of different radio access tech-
nologies [26]. Employing ML to predict specific metrics
(e.g., channel throughput) for RAN has gained impor-
tance [16], [26], [27], [28]. Within the context of DASH,
previous work employing ML has most of its focus on band-
width estimation at the client, which constitutes an input to
most ABR algorithms. Raca et al. [29] demonstrate that inte-
grating throughput prediction in the client can increase QoE,
regardless of the employed ABR algorithm. This idea is then
further explored [15], as the authors used an RF algorithm at
the client to predict the expected average throughput over a
time horizon. Moreover, Mao et al. [30] developed a reinforce-
ment learning method for directly obtaining the bitrate for the
next video chunk. The model employs an Actor-Critic neural
network model at the client, whose input includes historical
throughput information, buffer state, and next chunk sizes.
An even more general reinforcement learning model that was
not improved by Actor-Critic modeling has been developed
and tested on real networks for RAN self-management [31].
Liang et al. [32] demonstrate and motivate the benefits of
predictive prefetching. They consider streaming over a wired
network wherein the rate of change of segment bitrate is very
low, justifying their assumption that the next bitrate requested
can be the same as the previous bitrate requested, i.e., our
baseline.

Our approach performs the predictions at the MEC server,
and its main aim is to assist the overall caching process at
the core. To this end, it employs an end-to-end ML solution
that uses the RAN metrics and past history of segments served
to a client. These are in turn used to predict the number of
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segments requested over a time horizon and the mode of these
segments’ qualities per client.

B. Prefetching and Caching

Li et al. consider a mobile network, enabled with RNIS
information from the MEC servers for service improve-
ment [33]. An adaption algorithm runs on the MEC nodes,
responsible for alleviating network congestion and improv-
ing the user’s QoE. Another study considers a heterogeneous
network in which each client can switch between different
wireless networks. A MEC application is introduced, capable
of estimating the bandwidth and updating the client about the
network condition [34]. Tan et al. propose a MEC-enabled
solution capable of utilizing RNIS to perform caching and
updating the cache for DASH video services [35]. They pro-
pose two kinds of popularity for caching videos—request
popularity and expected popularity—to improve video qual-
ity and reduce buffer time. Another MEC-based DASH video
caching strategy has been presented in which the proposed
algorithm stores the highest bitrate of each segment on the
edge nodes and employs the processing power accessible at the
MEC nodes to transcode the video segment on demand [36].
A cache prefetching scheme able to prefetch video seg-
ments using an adaptation algorithm that takes into account
the throughput measurements from the client and the pre-
dicted throughput at the cache has also been suggested [37].
Distributed and cooperative caching methods have also been
studied, also for cloud RANs [38], and have been shown
to have attractive worst-case time complexity when approx-
imated [39]. Finally, a learning-based caching and prefetching
method is devised by Shi et al. [2] to improve users’ QoE
for adaptive video streaming. The algorithm caches the most
popular video segments at the edge in order to mitigate the
problem of network jitter.

Our work stands out in that we study the trade-off between
prefetching and transcoding higher bitrate video segments.
Moreover, we consider the cooperation among the MEC nodes,
making it possible to deliver the requested video segment
hosted on adjacent MECs. Furthermore, we study a realistic
scenario in which users can request various segment bitrates at
any given time, independent from previous requests. Finally,
unlike the studies cited above, we jointly study the prefetching,
transcoding, and resource allocation problems in the scenario
of mobile networks. This makes the problem more complex
and realistic, due to the dynamicity of the network and the
mobility of the users.

VIII. CONCLUSION

We proposed a novel approach for predictive prefetching
of segments in a DASH video streaming application using
neural networks and classical ML methods using services in
MEC-enabled mobile networks. We demonstrated that with an
accuracy of 90% for the predictive task, we achieved a MEC
cache hit ratio of 58%, which means that, through predictive
prefetching, we were able to reduce the access delay for 58%
of the requests. The prediction algorithm predicts the seg-
ment request bitrate over 2 seconds prediction time windows

using metrics from a 16 seconds metrics aggregation window.
An ILP model with two objectives is proposed to reach an
optimal solution for video content prefetching and transcod-
ing at the edge, followed by a heuristic algorithm that achieves
a near-optimal solution in a considerably shorter time scale.
We demonstrated that the backhaul link utilization could be
reduced by 60.91% through caching at the edge using ILP
Byte-hit objective in a live streaming scenario with segment
request overlaps. Our proposed heuristic resulted in reduction
of the execution time for prefetching in the 25 MB cache size
scenario by 90% with a reduction in the cache hit ratio by
7.5% and an increase of 2% in the backhaul link utilization
compared to the optimal solution.
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