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Abstract—Artificial intelligence (AI) is a key enabler for
future 6G networks. Currently, related architecture works
propose Al-based applications and network services that are
dedicated to specific tasks (e.g., improving performance of
RAN with AI). This approach offers a unique way to collect
data, process it, and extract features from data for each Al-
based application. However, this dedicated approach also creates
Al-silos that hinder the integration of AI in the networks.
In other words, such Al-silos create a set of Al-models and
data for Al-based applications that only work within a single
dedicated task. This single task approach limits the end-to-end
integration of Al in the networks and brings costs for network
operators. In this work, we propose a network architecture
to deploy Al-based applications, at different network domains,
that prevents Al-silos by offering reusable data and models to
ensure scalable deployments and lower costs for operators. We
describe the architecture, provide workflows for the end-to-end
management of Al-based applications, and show the viability
of the architecture through multiple use-cases.

Keywords—Reusable Al-based applications, E2E network
management, AI-Native Networks, 6G

I. INTRODUCTION

Artificial intelligence (AI) has become a promising en-
abler for future 6G networks. Such networks will deploy
many Al-based applications that leverage data to make au-
tonomous decisions for all network layers. This improves
automation and reduces the cost for network operators. Such
is the goal of the so-called Al-Native networks [1], [2]. While
the precise definition of the term AI-Native is still under
discussion, the goal of integrating multiple Al-based solu-
tions, where Al is a natural part of the functionality, in terms
of design, deployment, operation, and maintenance, into the
network is a common denominator between different related
works [3]-[5]. Such type of networks requires efficient end-
to-end management of these Al-based network services and
applications. To this end, new network architectures have
been proposed recently to realize the Al-Native vision.

Two architecture proposals have been published as a

step towards Al-Native networks [2], [6]. However, both
architectures use dedicated data pipelines for each Al-based
application. This means that each Al-based solution has a
unique way to collect data, process it, and extract useful
features from such data. This conforms to the current us-
age of Al-based solutions where they focus on a single
layer/application to optimize network resources [7]. This
way of managing the lifecycle of such solutions creates Al-
silos. These silos are the set of tools, features, and data
that exclusively work only for a unique and dedicated Al-
based application. For example, several Al-based applications
have been proposed for RAN automation that exploits data
to deploy RAN at different environments [8], [9]. In both
works this data, required to train models for the Al-based
application, is tailor fit to meet the specific conditions of
a given deployment [10]. Such data comes from a dedicated
data pipeline for each application. This means that data needs
to be collected twice and each Al-based application (i.e.,
machine learning model) needs to be managed independently.
This results in inefficient resource utilization for both the
data and the model lifecycle management. To circumvent this
inefficient deployment of Al-based solutions with Al-silos
and dedicated pipelines, we propose a network architecture
that exploits shared pipelines to ensure reusable network
services and applications.

The architecture proposed enables scalable end-to-end
management of Al-based applications. Unlike the previous
published architecture papers that focus on either (i) a specific
domain with generalized models, (ii) end-to-end domains
with dedicated pipelines our paper considers shared pipelines
for both data and models. This enables generalization of both
data and models and prevents Al-silos. The proposed archi-
tecture enables collecting, processing, and delivering data and
models to multiple applications. In other words, we reuse
data and models to optimize resource consumption when
deploying Al-based solutions in/for the network. To this end,
we describe the architecture components, the workflow, and
use-cases that illustrate the validity of our approach.



The paper is organized as follows. Section II presents the
related work where we go more in depth about the dedicated
pipelines solutions and how this approach does not align with
expectations for future 6G networks. Section III describes
the proposed architecture with all components to ensure end-
to-end Al-based service deployments. Section IV provides
workflows for Al-based deployment and migration using the
architecture. Section V presents two use-cases that illustrate
how the architecture enables future Al-based applications
highlighting the benefits of having a shared data pipeline.
Section VI concludes the paper and describes next steps. It
is important to note that for the rest of the paper the term
Al-based applications refers to applications in all layers of
the network.

II. RELATED WORK

The next generation networks (e.g., 5G beyond, 6G) call
for the so-called Al-Native paradigm where ~Al-native is the
concept of having intrinsic trustworthy Al capabilities, where
Al is a natural part of the functionality, in terms of design,
deployment, operation, and maintenance [1]. Despite the term
still being under discussion, it has set many expectations for
future networks [2]. The new paradigm calls for an explosion
of Al-based applications and network functions to support
next generation services. Recently, several works have been
published where authors try to close the gap between current
Al paradigm, where many applications run simultaneously
in each layer or per operation to a more data-driven and
intelligence-driven network operation.

A high-level architecture to enable Al-Native paradigm in
next generations networks was proposed [2]. The architecture
considers resource, security, function, capability exposure,
and orchestration layers. For intelligence in the network,
it considers hierarchical and distributed one, in-depth con-
vergence and connection, and a collaborative exposure of
connection and intelligence capabilities. This includes the
self-* properties of the network (e.g., self-configuration, self-
management, self-optimization) and exposure for Al capabil-
ities and services for third-party applications.

Another architectural work explored the close-loop au-
tomation framework to integrate different layers in different
domains, such as the Far and Near Edge [6]. The architecture
considers decentralized close loops to integrate Al in 6G via
network intelligence orchestration layer. With this layer, the
architecture coordinates the network intelligence instances
deployed across the end-to-end infrastructure, including be-
yond edge micro-domains. This approach ensures the correct
execution of closed-loops in the multiple domains, as each
Al-based application can have its lifecycle managed by the
central orchestrator.

While both previous architectures consider the tighter in-
tegration of Al-based application and services to the network,
there are some limitations. For the first work, the authors
describe only at a high-level the properties of an architecture
without describing the components that would enable such
architecture. For example, how to balance the training cost
and performance by applying intelligence in the network [2].
The second work also describes the design principles of the
intelligence orchestration level at a high level, but leaves

aspects as privacy and security for further discussion [6].
Moreover, both works consider dedicated data and AI models
pipelines for each Al-based application. This means that
each Al application is self-contained by obtaining data and
processing it according to the Al model, creating an Al-silo.
In other words, when a user needs to update the model, new
data will be collected, processed, and used in a training phase.
This has to be done for every Al-based application; thus,
this approach is not scalable nor efficient since resources
tend uniquely assigned to a single model application. This
in turn becomes costly for operators. For example, handling
thousands of Al-based network applications increases the
operator’s cost, as they need to collect new data for every
application. We propose an architecture that does not consider
such dedicated pipelines; and, by extension, Al-silos.

In our architecture we can reuse data and models to pre-
vent Al-silos. For example, if two different Al-based network
services need the same data but with distinct features (i.e.,
data processing is different), the architecture enables collect-
ing the data only once. Furthermore, the architecture enables
reusing models for similar applications. For example, an Al-
based network service that runs in different edge domains
will need to be slightly tuned to match the conditions of each
domain. By reusing the models, an operator can reduce costs
and time to deploy a service. This paper is a continuation of
one previously published [11]. In that paper we introduced
the concept of Artificial Intelligent Functions (AIF). The AIF
enables Al-based network services/applications by encapsu-
lating them inside the AIF. The services communicate using
the AIF well-defined interfaces, as described in the frame-
work presented in the paper. In this paper, we present the
detailed architecture, with each component, for supporting
AlFs enabling Al-based network services. For the AIF, we
also introduce the AIF descriptor that describes how to deploy
and manage the AIFs. This includes functional and non-
functional requirements related to Al, data management, and
hardware acceleration. Additionally, we describe workflows
that describe how the architecture supports AIF deployment
and migration to support multiple use cases.

Next, we describe our proposed architecture.

III. AI@EDGE ARCHITECTURE

The AI@QEDGE architecture supports artificial intelli-
gence in two approaches: “in-platform” and “on-platform”.
The ”in-platform” approach enables better usage of infras-
tructure resources through the network and service automa-
tion of AIFs. The “on-platform” approach enables better
end-user quality of experience through end-user application
intelligence AIFs. In other words, we consider AIFs both for
the network and application layer. To this end and to manage
the AIFs, we propose an AIF descriptor.

The AIF descriptor captures the information related to
the orchestration and lifecycle management. It describes
the rules and requirements of an AIF module and consid-
ers the aspects related to deployment and management of
MEC applications and the Al lifecycle management (e.g.,
collecting data, training models, updating models). Thus,
the AIF descriptor contains a MEC descriptor, an operation
management descriptor (e.g., a Helm Chart for Kubernetes



Network Function), and an Al-specific domain descriptor.
The later considers deployment information, such as required
environment (e.g., computation properties like CPU/GPU,
cluster, and nodes properties), advertised metrics and KPIs,
and data/model requirements.

All the previous requirements are managed by the dif-
ferent components of our proposed architecture. Thus, the
architecture supports end-to-end system orchestration and
management of third-party AIFs, as specified in life-cycle
management workflows. Such orchestration is supported by
a data pipeline that preserves privacy and security. To enable
such functionality, the AI@EDGE architecture is composed
of two layers: the Network and Service Automation Platform
and the Connect-Compute Platform, as shown in Fig. 1. The
first layer groups the components that provide the means to
properly control and optimize the performance of the MEC
and 5G Systems deployed at the near and Far Edge. The
second layer combines cloud computing and virtualization,
hardware acceleration, and a cross-layer, multi-connectivity-
enabled disaggregated RAN into a single platform. Next, we
describe the main components of the AI@EDGE architecture
to support AIFs.

A. Network and Service Automation Platform

The Network and Service Automation Platform (NSAP)
provides optimization and intelligence for the management of
AlFs. For example, for onboarding and instantiation of AIFs,
the Multi-Tier Orchestrator, and the Intelligent Orchestration
Component, will efficiently allocate the resources needed by
the AIFs. Additionally, the NSAP adds intelligence via the
Non-Real Time RAN Intelligent Component which provides
Non-Real Time intelligence in a RAN domain. We describe
the NSAP in more detail in the following text.

The Multi-Tier Orchestrator (MTO) is the NSAP en-
try point for onboarding and instantiating AIFs. It enables
communication with different orchestrators, such as MEC
orchestrators and cloud based NFV orchestrators. It can also
issue orchestration operations to nodes in different locations
of the network, such as instantiation, migration, as specified
in the AIF descriptor. For example, when the MTO receives
a migration request it checks the AIF descriptor to meet the
requirements present in the descriptor. Such requirements
are the input to the Intelligent Orchestration Component
(I0C) to seek the most suitable solution to the request. The
IOC leverages functionalities of fault, security, and resource
management for AIFs in run time. Additionally, the IOC can
select the best placement of AIFs which require hardware
acceleration. Once the decision is provided by the IOC, the
MTO proceeds with the deployment process to the selected
destination, communicating to the specific MEC Orchestrator
required. This division of responsibilities between the MTO
and IOC ensures an extensible and native intelligence for
network management by the synergy of responsibilities: The
MTO keeps track of the status of edge systems while the IOC
offers an intelligent decision by levering on AI/ML models.
The lifecycle management can be for a single network service
or a slice. For the latter case, the Slice Manager supports the
MTO.

The Slice Manager provides control over the lifecycle of
network slices in the AI@EDGE platform. It creates slice

instances and controls their lifecycle over multiple MEC
systems and 5G systems. It enables Create, Read, Update,
and Delete operations over slice instances, as defined in
a slice descriptor. The architecture considers two ways of
slicing: implicit and explicit. The implicit slicing follows a
best-effort approach without guarantees. The explicit slicing
uses a descriptor to define the main requirements of a slice,
being able to pre-allocate resources at desired MEC systems,
guaranteeing performance KPIs at this level. In addition, the
Slice Manager relates the SLA requirement with the logical
sliced network. To do so, it interacts with the MTO and RAN
controllers to allocate needed resources for a slice. During
this interaction, the IOC supports the decisions of the MTO;
however, to meet the requirements up-to-date data needs to
be available to the IOC. The architectural component that
ensures such data is the Data Pipeline.

The Non-Real-Time RAN Intelligent Controller (non-RT
RIC) is the key element to implementing non-RT intelligent
closed-loop automation related to the 5G System at the
NSAP level, and to manage the 5G System Platform level.
The AI@EDGE architecture is aligned with O-RAN’s view
on AI/ML, where the AIF and the rAPPS/xAPPs can be
related [12]. The latter is enabled through the implementation
of the Al interface between the non-RT and near-RT RICs,
which enables the definition of policies to control xAPPs.
In addition, some of the O-RAN’s workflows, such as the
AI/ML, are implemented in the AI@EDGE through the Data
Pipeline.

The Data Pipeline is responsible for delivering up-to-
date and relevant data to AIFs executing on the AIQREDGE
platform. Since the IOC executes several AI/ML models,
the Data Pipeline also offers data to the IOC. Moreover,
since data is only half of the equation for a successful Al-
Native network platform, the Data Pipeline also considers the
lifecycle management of AI/ML models (e.g., instantiating,
updating, and replacing). This enables the AI@EDGE archi-
tecture to support multiple types of Al and machine learning,
such as supervised learning or reinforcement learning. To
match the requirements of these learning types, the Data
Pipeline separates the responsibilities of lifecycle manage-
ment into different components: The Data Collector, the Data
Processor, the Data Repository, the Model Manager, and
Model Repository. The Data Collector receives data from
multiple data sources required to train models, it also offers
authentication functionality to prevent spurious data. The
Data Processor cleans, filters, and prepares data for the AIFs.
It can also provide more data when updating and/or replacing
an AI/ML model for the AIF. Since some data might require
time to obtain, the processor can store data in the Data
Repository. The Data Repository enables the re-usability of
data by many models. Such models can specify the meta-data
of the AIF descriptor. The data from either the Data Processor
or Repository can be used for model training; however, due
to the high variability of models, the AI@EDGE architecture
does not contain a generic model processor as a component.
The AI@EDGE architecture enables the lifecycle manage-
ment of these models via the Model Manager. The Model
Manager is responsible for the evaluation of performance for
one or multiple models. Such evaluation is either periodic or
by events, as specified in the AIF descriptor, and monitored
by the Model Manager. If the performance is not satisfactory,
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the Model Manager triggers an update. Such update is stored
in the Model Repository which contains metadata associated
with the model. This enables model re-usability by different
AlFs.

B. Connect-compute platform

The Connect-Compute Platform (CCP) facilitates the de-
ployment and management of AIFs by using their descriptors.
More specifically, the CCP ensures the necessary life-cycle
operations for each AIF, and by extension of Al-based
network services. To ensure this, the AI@EDGE architecture
creates synergy between the NSAP entities and the CCP.
For example, the Data Pipeline operates integrally with the
CCP to ensure data is available at the AIFs. To ensure
such integration with the NSAP, the AI@EDGE architecture
groups the function by the CCP in two layers: MEC system
components and 5G system components.

The European Telecommunications Standards Institute
(ETSI) defines Multi-access edge Computing (MEC) stan-
dards as a network architecture concept that enables cloud

- Data plane
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Data weo--u Cross-plstform andior cross-
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AI@EDGE architecture to deploy Al-based applications. It considers Cloud, Near Edge and Far Edge domains.

computing capabilities for application developers at the edge
of the network [13], [14]. Following the ETSI standard, the
AI@EDGE architecture defines a MEC system with several
blocks: the MEC Host, the MEC Platform Manager, the
MEC APPs/AIFs Orchestrator (MEO), and either Near or
Far Edge domains. The MEC Host offers the resources to
deploy AlFs, including in as-a-service paradigm. It consists
of: (i) a Virtualization Infrastructure Manager, responsible for
the management of virtual resources, (ii) a MEC platform,
which contains functionalities to run MEC applications on
a particular infrastructure and enable to provide/consume
MEC services, (iii) the MEC APPs/AIFs as a Service which
exposes the APPs/AIFs to be consumed by a MEC platform
or applications. The MEC Platform Manager is responsible
for APPs/AIFs lifecycle management, FCAPS for the MEC
platform, and network management (e.g., traffic rules and
DNS configuration). The MEC APPs/AIFs Orchestrator man-
ages the lifecycle of applications through the MEC platform
manager, deploys AlFs, and selects appropriate MEC hosts
for AIFs during instantiating such applications. The near and
Far Edges contain the computing (virtual) infrastructure and,



in the case of the Near Edge, hosts the main management
entities of the MEC system.

The AI@EDGE architecture considers the network func-
tions that form the virtualized 5G RAN and Core. To en-
sure interoperability with other standardization efforts, the
5G System is based on the O-RAN specification [12]. It
enables network automation intelligence for the AIFs. These
functions also are managed by the IOC in the Edge domain
like at the NSAP.

The IOC will continuously monitor the different MEC
systems, looking for anomalies or faults in specific AIFs and
nodes. In case any anomaly or fault is detected in a system,
the IOC could decide to migrate certain AlIFs to balance the
load between different nodes, always ensuring the minimum
requirements of the AIFs specified in the descriptor are met.
It is expected that the IOC includes several AI/ML models
deployed in the architecture to solve placement or runtime
issues in AIFs.

In the next section we describe how the AI@EDGE
architecture components interact with each other through
some workflow examples.

IV. AI@EDGE ARCHITECTURE WORKFLOWS

In this Section we describe the how to handle the end-to-
end management of AIFs by describing common scenarios
such as instantiating, migrating, and updating an AIF.

A. Workflow to instantiate a new AIF

This workflow describes how to deploy an AIF in the
AI@EDGE architecture. Fig. 2 shows how the deployment
is done. It begins with the Operation System Support (OSS)
that receives a request to instantiate an Al-based application.
Then, the OSS sends the request, which contains an AIF De-
scriptor File (AIFD), to the Multi-Tier Orchestrator (MTO).
Then, the MTO stores the AIFD in the Database, which, in
turn, returns to the MTO the Descriptor File ID. After this
process, the MTO will select the best MEC system for the
AIF deployment, according to the AIFD. To do that, the MTO
sends a request to the Intelligent Orchestrator (IOC) to check
what is the best MEC system to instantiate the AIF.

The I0C decides which MEC system is the most ap-
propriate to deploy the AIF based on the status of each
MEC system and the AIFD requirements. If a MEC system
is chosen, then the IOC selects the Near Edge node of the
respective MEC system to instantiate the desired AIF. This
request is forwarded to the respective MEO and the MEC
platform Management. The latter contacts the respective VIM
to allocate the necessary resources. It is important to highlight
that the AIF could be deployed on the Far Edge or the
Near Edge depending on the requirements and the available
resources. In this example, the AIF was deployed on the Near
EDGE. The process to deploy it in the Far Edge is the same.
If no option in the Near Edge is found, then the AIF should
be deployed in the cloud. The process is similar as described
in Fig. 2. But the NFVO located in the cloud is the entity that
will receive the MTO request. Then, the NFVO will contact
the VIM in the cloud to allocate the necessary resources.
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Fig. 2. AI@EDGE AIF instantiation workflow.

B. Worfklow for AIF Migration to a different MEC system

After the AIF deployment, it is necessary to monitor
the MEC system available resources. If, for some reason,
the MEC system does not have the necessary resources to
run the AIF anymore, the migration should be done. This
case is illustrated by the workflow presented in Fig. 3 which
describes on the left the cloud, in the middle square the MEC
system 1 and in the right square the MEC system 2. The AIF
is initially deployed in the MEC system 1.

The workflow starts with the VIM of the MEC system 1
sending the status of the resources to its MEO. The MEO
realizes that the current MEC system cannot support the
AIF and contacts the MTO requesting to migrate the AIF.
The MTO then contacts the IOC to compute what is the
best MEC system to migrate the AIF. The IOC starts this
process by collecting the status of all MEC systems and then
a specific MEC system is chosen which is, in this example,
the MEC system 2. The IOC then sends to the MTO is
the corresponding MEC system in which the AIF should be
moved. The MTO then contacts the chosen MEC system by
contacting the corresponding MEO. The MEO then contacts
the MECPM that contacts the corresponding VIM of the
Near Edge to allocate the necessary resources for the AIF
deployment. After the deployment, a confirmation is sent to
the MEO that forwards it to the MTO. The last step is the
removal of the old AIF that was initially deployed in the
MEC system 1.

! MECSYSTEM1 !

| Infrastructure resource |
info

! MECSYSTEM 1 |
i

mmmmmmmm

Fig. 3. AI@EDGE AIF migration workflow.



The migration workflow is a way to offer scalability to
the proposed architecture as the resource management is op-
timized and, therefore, more AIFs can be deployed by using
the workflow of Fig 2. However, for a good management of
the available models inside the AIFs, it is important to handle
the scenario where the model performance is decreased.

In the next workflows, we propose how the architecture
supports models’ replacement and retraining.

C. Workflow for Model Replacement

Fig. 4 describes how the proposed architecture supports
model replacement for the AIF. It is important to note that the
AIFD contains information to instantiate an AIF; however, it
also contains indicators to be monitored about the AIF’s state
such as the prediction, performance, and confidence. The
prediction contains the output of the model, the performance
relates to the model, and the confidence indicates how precise
a model is, respectively. This information is received by the
Model Manager which associates metadata (such as a unique
identifier and historical performance) to the AIF. With such
information the Model Manager can ascertain whether the
model running in an AIF needs to be replaced. Fig. 4 shows
how to replace a model by comparing the current model’s
performance with the one in the model’s meta-data. If the
AIF’s model underperforms, the Model Manager starts the
replacement process.

The first step is to check in the Model Repository if
there is a compatible model for replacement. By model
replacement, we mean that there is a compatible model stored
in the database that can be used to replace the current model.
This replacement avoids training a new model from scratch
which can take a long time. In this scenario, there is a
compatible model. Then the Model Manager request to the
current AIF to replace the model. After this replacement, the
AIF register the new model with the necessary metadata and
this information is stored in the Model Database.
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The compatible model for replacement might not be
available. Then, the Model Manager needs to trigger the
model retraining process. This process is illustrated in the
green box of the Fig. 5. After a compatible dataset is found,
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Fig. 5.  AI@EDGE Artificial Intelligence Function model replacement
workflow. In this scenario no compatible model is found.

the Model Manager requests the Orchestrator to deploy a
training AIF to process the compatible dataset. After this
deployment, the model is trained, instantiated, and the old
model replaced. Then, the new model is registered in the
model database for future use.

The workflows in Figures 4 and 5 detail how the
proposed architecture supports reusability of Al-based appli-
cations. By reusability, we mean Al-based applications reuse
models and data by the architecture’s shared pipepline. The
data and model pipeline presented supports feature extraction
for similar applications. This means that the data can be
collected once, and different features can be extracted to
be consumed by similar applications. This avoids Al-silos,
as both data and model are shared in our architecture.
Furthermore, the migration workflows presented in Fig. 3 also
provides scalability as an intelligent resources management
can leads to more AIFs to be used in the network.

Next, we illustrate how AIF applications can be deployed
using the proposed architecture through two uses cases that
highlight the end-to-end service management.

V. USE CASES

The proposed architecture supports a secure and reusable
artificial intelligence platform for edge computing in beyond
5G networks. This includes a framework for closed-loop
network automation that supports flexible and programmable



pipelines for secure and reusable Al models, as well as a
connect compute platform to create end-to-end slices sup-
porting a diverse range of Al-enabled network applications.
To this end, we highlight two use cases that illustrate how
our proposed architecture supports Al-based applications and
services facilitating the end-to-end management.

A. Use case 1: Virtual validation of vehicle cooperative
perception

The use case considers multiple vehicles exchanging
trajectory data in a roundabout, where traffic fluidity and
safety are paramount. This is gathered at the network edge,
and it will be used to build a view of the roundabout envi-
ronment, using a digital twin that considers the roundabout
with autonomous and human-driven vehicles, all supported
by AIFs. The multiple AIFs will predict potential collisions
and dangers from both autonomous and human-driven ve-
hicles. Since this is a complex and costly scenario in the
real world, the proposed architecture will support a digital
twin with cooperative perception in the context of real and
emulated vehicles. This means that the proposed architecture
will support and optimize communication between human-
driven and autonomous vehicles. Each autonomous vehicle
drives with a reinforcement learning agent to coordinate the
actions (e.g., driving, communicating). However, since the
local execution of Al algorithms with direct vehicle to vehicle
(V2V) has limitations, such as the possibility to identify and
solve complex traffic situations like in a roundabout, the
computing architecture will be required to ease the limitations
of V2V. In other words, the vehicles will coordinate trough
the network (i.e. the edge) in a vehicle to network approach
(V2N).

The change of communications perspectives from tra-
ditional V2V short-range (e.g., 802.11p) to the V2N long-
range (e.g., 5G) using the MEC platform of the proposed
architecture adds latency in V2V communications but allows
for wider communications between the vehicles. This means
that the networks offloads coordination functions, deployed
as AlFs, that allow for a more complete solution regarding
scenarios such as the roundabouts. For this use case latency
in the V2N communications will be under 2000ms, with
positioning of 1.5 meters to deal with vehicle dynamics and
movement. The vehicle density considered is 12000 vehicle
per square kilometer. This means that a digital twin deployed
with the architecture can simulate that density of vehicles. To
this end the testbed for the use case is described next.

The use case considers two testbeds connected to the
proposed architecture (i.e., the AI@EDGE architecture). The
first testbed relies on the driving simulator at POLIMI in
Milano connected to the AI@EDGE through a 5G Telematics
BOX. This ensures that the simulator can send dynamic data
to an Edge Node on which the Cooperative Perception AIF
will execute. The second testbed is the validation site at
CRF in Torino where a 5G emulator tests the 5G enabled
automotive Telematic Boxes. This allows sending data to
the Cooperative Perception AIF through the 5G emulator.
It is important to note that the proposed architecture not
only supports the Cooperative Perception AIF but also the
orchestration, deployment, and migration MEC functions to

support the roundabout scenario. The functionalities high-
lighted in the use case are local traffic outbreak on the
edge, the extension of the digital twin with 5G connectivity,
and the added intelligence to vehicles, through the AIFs,
to coordinate maneuvers with both autonomous and human-
driven vehicles.

B. Use case 2: Edge Al assisted monitoring of linear in-
frastructures using drones in Beyond Visual Line of Sight
operation

The use case considers monitoring large areas of roads
networks using drones in Beyond Visual Line of Sight
(BVLOS) mode trough the 5G network supported by the
proposed architecture. In this scenario, reliability and fluid
data traffic are required to send telemetry, image, and video
data with low latency. To support such requirements, the
MEC systems based on Al and Edge Computing of the
proposed architecture will support AIFs for: optimal monitor-
ing, accelerating computational and modeling processes, and
improving reliability and range of operation. This includes
energy efficient functionalities to scan the infrastructure and
environment, build a 3D model of the infrastructure, locate
identified incidents, and send notifications to a human drone
operator. Moreover, all data must send continuously to a
central domain to improve decision making by the drone
operator. Two AlFs are being deployed with the proposed
architecture to support the automated incident detection:
anomaly detection and 3D reconstruction AIFs.

The anomaly detection AIF can identify, detect, and
locate anomalies in the videos acquired by the drone. To
support such functionality the drone has on-board a data
server that synchronizes data from the different sensors.
The drone also includes a message bus broker to send
synchronized data to the AIF. This synchronization is im-
portant for the anomaly detection; but it is fundamental for
the 3D reconstruction AIF since images with their position
and orientation need to have the same time reference. The
anomaly detection AIF uses Detic as detection model and
CLIP visual-language model for the search engine [15], [16].
The proposed architecture supports updating the Detic model
through the Model Manager, as described in Section I'V. This
allows for accurate and up-to date anomaly detection model.
When a drone operator wants to detect a concrete anomaly,
such as “rolled truck on the road”, the anomaly detection
AIF will interpret natural language and identify when and
where the anomaly described appears in the video sent by
the drone. If such anomaly is detected, it will be sent to the
3D reconstruction AIF.

The 3D reconstruction AIF generates the third-
dimensional model of the area where an anomaly has been
detected. To achieve this, the drone will start flying around
the area to generate a photo realistic representation of the
environment by capturing position, orientation data at every
instant of time. In other words, the operator will program
the drone to perform a circular flight to obtain overlapped
images. The communication functionality and management
of the AIF is also supported by the proposed architecture.
In particular, the outdoor scenario integrates both the STonic
and the proposed AI@EDGE architecture to provide assisted
monitoring operation [17], [18]. This includes drone control



communication (C2) and video latency of less than 50 and
100ms, respectively, and C2 signal packet loss of less than
1%. In addition, the support of lifecycle management of both
data and AIF models by the proposed architecture.

C. How the AI@EDGE architecture supports more use-cases

The AI@EDGE architecture described in Figure 1 pro-
vides a data-driven approach with components such as the
data collector, data processor, and different domain databases.
This data-driven architecture provides data privacy by de-
livering the processed data to the desired Al-based net-
work service that is consuming that data (i.e., the AIFs).
Specifically, the data processor is the main element of the
proposed system. The data processor manages all the data-
driven aspects such as asking for the data, processing it and
delivering it to the correct application. This allows reusing
data for multiple uses-cases and applications by enabling
efficient resource usage (e.g., collecting data once for many
applications). This has synergy with scalability issues for next
generation networks. Thus, to support the explosion of Al-
based applications, the proposed architecture supports shared
pipelines for multiple uses cases, instead of the traditional
dedicated (data/model) pipelines for each Al-based network
service. In our approach we provide data reusability but also
Al model lifecycle management via the Model Manager, as
described in Section III-A. This means that new use cases can
reuse models from different applications with techniques such
as transfer learning. For example, instead of having many
different models for the RAN domain (which brings lots of
complexity for network operators), our proposed architecture
allows reusing general models that match closely the condi-
tions of a specific RAN domain. Additionally, unlike related
works that focus only on a single layer of the network, our
proposed architecture considers different layers and domains,
such as the Cloud, Edge, and Far Edge, simultaneously
with current 5G and beyond functionalities. This means we
support network functions and applications in end-to-end
service, with artificial intelligence through standardized AIFs.
Thus, the architecture supports new use cases from different
verticals such as industrial 10T, aviation, among others.

VI. CONCLUSION

This paper presented the AI@EDGE architecture for end-
to-end management for Al-based applications at the network
and application layers. Unlike other works which consider
dedicated pipelines that create Al-silos, our proposed archi-
tecture enables reusing data and models to ensure a scalable
deployment of Al-based applications. We described how
to instate, migrate, and replace such Al-based applications
using the architecture’s components. As next steps, we will
implement a test bed and evaluate our proposed architecture
supporting use cases for next-generation networks. This is a
step towards the Al-Native network vision.
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