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Abstract—WiFi, a widely used technology in IoT, provides QoS
through IEEE 802.11e EDCA Access Categories (AC) which have
fixed configuration with strict priorities. This makes WiFi QoS un-
suitable to the rising QoS diversity, changing wireless conditions and
network dynamics. QoS slicing, where network resources are divided
into chinks for diverse QoS requirements, is a potent technology
that can provide more flexible, adaptable and highly configurable
QoS in WiFi based IoT networks. However, resource management
of QoS slices with diverse IoT applications, limited network capac-
ity and varying channel conditions is a complex and challenging
task. Traditional queuing theoretic and optimization models become
intractable to solve such complex and dynamic problem. Therefore,
we have developed a Deep Reinforcement Learning (DRL) based slice
resource management scheme to meet IoT QoS requirements in a real
world 5GEmpower controlled SDN network. Our proposed scheme
outperforms Airtime Excess Round Robin (ATERR) scheme and no
slicing-based scheme in terms of slice throughput (QoS) satisfaction.
Moreover, our proposed scheme is tested in real world environment
and can adapt to the changing slice requirements in an IoT network.

Index Terms—WiFi Slicing, Deep Reinforcement Learning, QoS in
WiFi, Adaptive Slice Management, Airtime Management

I. INTRODUCTION

Internet of Things (IoT) has been build upon interconnection
of physical devices, sensors, medical appliances and Radio Fre-
quency Identification Tags. In the last few years, IoT networks
have expanded at a fast pace in different industry verticals [1]
including smart factories, healthcare, smart cities and agricul-
ture sectors. Many new applications have been developed that
employ machine learning algorithms by collecting data from
distributed sensors, appliances and machines and draw intelligent
inferences [2]. To enable IoT use cases, there are various Quality
of Service (QoS) requirements of IoT sensors and applications in
terms of throughput, latency, and reliability. More often, meeting
these QoS requirements is crucial for the success of the IoT use
cases.

Due to requirement of reliable QoS in present day IoT networks,
access and core networks have incorporated various techniques to
provide QoS to the different IoT traffic in the network. Wired
networks enable QoS through Differentiated Services (DS) where
flows are classified and managed separately as Voice, Video or
Best Effort (BE) flows. Similarly, IEEE 802.11e based networks
(WiFi) use Enhanced Distributed Channel Access (EDCA) Ac-
cess Categories (AC) to differentiate between different types of
traffic [3]. The QoS in WiFi networks through EDCA has 4 QoS
categories and has fixed configuration of each category; therefore,
it cannot support the rising diversity in QoS requirements and
varying dynamics of the IoT networks. Although, IEEE 802.11aa
defines further segregation of video and voice traffic to two
classes and uses credit based schedulers to emulate a total of
6 access categories in WiFi however, channel access parameters
like Contention Window (CW) and Arbitrary Inter Frame Spacing

(AIFS), which primarily control service differentiation, are defined
only for the proposed 4 EDCA categories. Moreover, most of the
channel access is consumed by voice and video traffic, due to very
small contention windows compared to best effort and background
traffic, thus affecting best effort traffic flows which are mostly
being used by IoT sensors and devices. As a result, their QoS is
adversely affected.

Many research works have proposed throughput enhance-
ment [4] and delay reduction [5] schemes in WiFi based IoT
networks for IoT QoS. Some works have even employed AI and
ML as well in their works for QoS satisfaction and they always
rely on EDCA access categories to provide QoS in WiFi based IoT
networks [4] [6]. However, the problem is that EDCA has limited
number of access categories with fixed configurations. Therefore,
in order to dynamically manage the varying range of IoT QoS
requirements with in the available resources, a more flexible and
highly configurable QoS framework is required in WiFi based
IoT networks that can also prioritize QoS flows over one another.
Moreover, WiFi QoS mechanism needs to have more granular
control over network resources through more access categories to
support large number of applications/services.

To address the shortcomings in present WiFi based networks,
Software Defined Networking (SDN) provides a flexible frame-
work to perform QoS slicing in the network where network
resources are sliced into multiple chinks. Each resource chink can
then be assigned to QoS slices and can then be managed through
SDN controller to provide desired connectivities (QoS) in the
network [7] [8]. This framework, on the one hand, enables creation
of more access categories in WiFi networks and on the other hand,
helps preserve QoS information while traffic traversing from dif-
ferentiated services to access categories in wireless medium. How-
ever, managing network resources for access categories or QoS
slices is a complex and challenging task. It involves a dynamic
and adaptive management of network resources while keeping
in view the channel conditions, applications QoS requirements
and available network capacity. To address this challenge, we
have proposed a Deep Reinforcement Learning (DRL) based slice
resource management scheme that can learn network dynamics
and provide improved QoS to the applications and sensors in the
wireless IoT network. Our main contributions in this paper are:

• We have developed a slice throughput requirement estima-
tion algorithm in 5GEmpower SDN controller to determine
different QoS slice throughput requirements autonomously.

• We have proposed an DRL based dynamic slice resource
management algorithm that runs in a SDN controller and
provides desired throughput to all slices in the WiFi based
IoT network.

• Our algorithm is able to adapt to the changing through-
put requirements and wireless conditions to provide desired
throughput to the QoS slices



• Our proposed algorithms are tested in real world experimental
test bed for validation.

II. RELATED WORK

QoS in wireless networks is an ongoing research problem
that poses significant challenges compared to wired networks
due to unpredictable nature of wireless medium. As such, many
techniques have been proposed in literature to address the QoS
problem in WiFi based networks. Authors in [9] have proposed a
QoS slicing based solution in WiFi networks using 5GEmpower
SDN controller to provide QoS to two different types of flows. The
system is able to provide more resources to QoS slices to provide
better QoS to the applications compared to BE applications.
However, they only considered two slices in the network. Authors
in [10] proposed a Quadratically Constrained Quadratic Program
(QCQP) based algorithm to assign airtime to different network
slices to meet the latency requirements of applications in the
network. The proposed scheme however, has limitations to employ
such techniques in real-time to meet QoS requirements.

Authors in [11] proposed a Proportion Time Deficit Round
Robin (PT-DRR) based slice resource assignment algorithm and
used airtime allocation to network slices for QoS provisioning in
the network. The proposed scheme is based on queuing theory
and employs quantum assignments to the network slices based
on airtime being used by different queues. However, airtime
for packets also depends on the physical layer parameters like
Modulation and Coding Scheme (MCS) and CW etc therefore,
quantum assignments can only indirectly control the total airtime
of each slice. The proposed scheme calculates the ratio of quantum
for each slice based on available channel capacity and slice
requirements and allocates them to the available slices. Since
wireless medium and application requirements are a continually
changing phenomenon, fixed quantum assignments can lead to
poor QoS in the network.

Similar to PT-DRR, authors in [7] have proposed Adaptive
Time Excess (ATERR) based resource allocation in QoS slicing
framework to enable QoS in a WiFi network. In this work, the
authors calculate the quantum assignments to the slice based on
time excess and requested airtime rather than deficit [11] for the
available network slices. The time excess is calculated based to
consumed airtime by packets and remaining quantum for the slice
(airtime consumed - remaining quantum). A negative time excess
will let slice transmit its packets while packet transmission stops
as soon as time excess become positive, indicating all quantum
has been consumed in that round of scheduling.

Although quantum assignments can indirectly control the air-
time each slice gets in the wireless medium, there are various other
factors that affect the airtime a device gets in the WiFi network.
There factors include Modulation and Coding Schemes (MCS),
CW and ACK policy etc. A lower MCS will consume more airtime
in the wireless medium to transmit packets (because of low bit
rate) and hence the assigned quantum value will not be able to
provide the desired QoS (throughput or latency) to the network
slice. For these reasons, quantum assignments cannot be done
based on requested airtime as it may vary based on MCS being
used at the physical layer of the network. Therefore, knowing the
MCS being used at the physical layer is also important during
quantum assignments.

Although network slicing and slice resource management has
been proposed in literature, it lacks adaptive resource management
to continually meet QoS in IoT networks. In this context, AI and
ML based approaches can help develop algorithms that can effi-
ciently utilize network resources and can learn network dynamics

Fig. 1. Network Model

to enable a dynamic and evolving QoS management [6] [12].
Owing to AI and ML benefits and their adaptive and dynamic
nature, we have proposed a DRL based slice resource management
scheme for meeting varying throughput requirements of IoT traffic
flows in a SDN controlled wireless IoT network.

III. NETWORK SETUP AND QOS SLICING

In order to develop the DRL based resource management for
QoS slices, we have used the 5GEmpower SDN framework [13].
5GEmpower is a multi-RAT SDN framework that supports both
WiFi and LTE networks. It provides a web based user interface
to interact with the network applications, create access control
lists and create/delete QoS slices. It also provides a Python based
Software Development Kit (SDK) to develop network applications
which run as services on the SDN controller. The network statistics
are collected from the empower agent running inside the Access
Points (AP) being controlled by the 5GEmpower SDN controller.
The pictorial representation of the network model is given in
Figure 1.

The network model comprises of an SDN controller communi-
cating with an AP. The IoT devices are simulated using Raspberry
Pi boards that are associated with the AP over IEEE 802.11n based
WiFi standard. IoT devices are randomly distributed around the
AP and are receiving traffic from the AP in the downlink. Each
device is running multiple IoT applications requiring different
levels of throughputs for the QoS flows in the downlink. A single
SDN controller is controlling multiple APs inside the network.

In order to implement QoS slicing, we have considered M
distinct applications/services in the network with different QoS
requirements where M=[1,2,3,....,m]. To provide QoS to these M
distinct applications, S slices are created where S=[1,2,3,....,s] and
S can be equal to or less than M. Applications requiring same
level of throughput or latency are considered similar and belong
to the same QoS slice. To prioritize similar applications in the
same slice over one another, we have developed a traffic rule
abstraction that enables QoS flows to be moved from low priority
slice to the high priority slice and vice versa to reliably meet their
QoS requirements.

In order to understand the slice throughput requirements, the
SDN controller collects statistics like packet arrival rate and



average packet size, for fixed time intervals, from different QoS
slices created in the AP. In this way, it can employ time interval
based estimator to automatically estimate the slice throughput re-
quirements. Subsequently the controller assigns network resources
to the slices to meet these requirements. In case of traffic flows
exceeding the available capacity at the APs, the low priority slices
are affected thus ensuring QoS for high priority slices. To avoid
such situations, admission control algorithms can be employed to
ensure that traffic flows does not exceed the available network
capacity.

IV. DRL FRAMEWORK FOR QOS SLICE RESOURCE
MANAGEMENT

In order to address the challenges of diverse applications QoS,
varying channel conditions and changing network dynamics, we
have employed Deep Reinforcement Learning (DRL) to develop
an adaptive slice resource management scheme. In our proposed
scheme, a DRL agent is deployed inside the SDN controller that
runs as a network application and takes the resource assignment
decisions for the QoS slices. The primary objective of our DRL
agent is to manage resource assignments to QoS slices such that
slice throughput requirements are met under all conditions.
A. Problem Formulation

Since there is a single DRL agent that is learning optimal slice
configuration for multiple slices, this slice resource management
problem becomes a Multi-Objective problem where each slice
satisfaction is a separate objective for the DRL agent. This
is done through weight vector which contains weight of each
of the objectives of DRL agent. Therefore, our problem can
be represented by Multi Objective Markov Decision Process
(MOMDP).The throughput of each slice would be the sum of
throughputs of all users present in that slice and the quantum
assignment to the slice. So we can represent it as follows:

Ths =
∑

ks∈Ks

Thk = f(Qs,MCS, TX − Power,ACK) (1)

where k represents the number of users belonging to slice s.
The throughput of each slice will depend on the Quantum values,
MCS, transmit power and ACK policy etc being used by the users
in the slice. Therefore, the slice throughput would be a function
of many OSI layer parameters in addition to quantum values as
represented by the function in equation 1. The total achievable
throughput, bounded by the network capacity, is given by:

Thtotal =
∑
s∈S

Ths (2)

The objective of our DRL agent is to satisfy the throughputs of
all the slices in the network while also trying to maximize the ag-
gregate throughput. Our optimization problem can be represented
with the following objective function:

max
s∈S

S∑
s=1

Ths (3)

subjected to,

C.1 Ths>THes∀s ∈ S

C.2 Qtotal ≤ 10000µsec

where THes represents the estimated slice throughput and
Qtotal represents the total quantum value distributed among the
slices. The value is kept at 10000 µsec to keep scheduling latency
of the QoS flows under 10 ms.

B. DRL Framework
To employ DRL in this problem, the wireless environment

and QoS requirements are represented with the help of envi-
ronment state. There are numerous variables that can define the
environment state but they eventually have an effect on achieved
throughout. Therefore, we have defined the state of our DRL agent
with the help of achieved throughput in each of the created slices
in the network. For meeting slice’s throughputs, our DRL agent
assigns quantum values to the slice schedulers and follows Airtime
Deficit Round Robin (ADRR) scheduling policy defined by [14]
to prioritize the slices. ADRR uses airtime deficit in its scheduling
which is calculated based on the MCS being used at the physical
layer therefore, MCS indirectly becomes part of the DRL agent’s
state space. For better understanding of our DRL framework, the
states, actions and rewards of our agent are described as follows:

1) State: The DRL agent defines its state with the help of
throughput being achieved by each slice and their estimated
throughput requirements as follows:

st = (Th1, THe1, Th2, THe2, ..., Ths, THes) (4)

where Ths represents the throughput achieved by slice s and
THes represents the required throughput thresholds for slice s
estimated by the SDN controller.

2) Action: The action that DRL agent can take is either to
increase the quantum (resource) of the slice, keep the quantum
same or decrease the quantum of the slice depending on the state
of the agent. The action can be represented as follows:

at = (Qincrease, Qdecrease, Qneutral)(5)

Fig. 2. Flow Chart of DDQN based Slice Resource Management Algorithm

3) Reward: The reward function is defined on the basis
throughput satiisfaction level in each of the slice, represented as
R1

t (st, at) and is given by:

Rs
t (st, at) =



10 if Rs
t ≤ 110 % satisfaction

7 if Rs
t ≥ 70 % satisfaction

4 if Rs
t ≥ 50 % satisfaction

1 if Rs
t ≥ 30 % satisfaction

−5 otherwise.

(6)



(a) Proposed DRL based Slice Resource Assign-
ment

(b) ATERR Based Slice Resource Assignment (c) Throughput without QoS Slicing

Fig. 3. Comparison of Slice Resource Assignment for QoS in WiFi based IoT Network

Each slice will get its own reward represented as R1
t (st, at),

R2
t (st, at) and Rs

t (st, at). The total reward that the agent gets at
each time is calculated as follows:

Rt = W ∗ [R1
t , R

2
t , ..., R

s
t ]

T (7)

where W is the weight vector representing the throughput
requirements of the slices. The weight vector is calculated based
on the available channel capacity that the AP estimates from time
to time and slice throughput requirements. The calculation of the
weight is done by the DRL using the available channel capacity
agent as follows:

W = [Ws1/ζ,Ws2/ζ, ....,Wsm/ζ] (8)

where ζ represents the total AP capacity that it estimates from
time to time.

C. DRL Model: Neural Network Architecture

Because of the large number of states, actions and requirement
of efficient quantum assignments to the slices, we have used
deep neural network as the function approximator for our DRL
agent. Such a function approximator learns the function ”f”
given in equation 1 through environment exploration. We have
employed Double Deep Q Network (DDQN) with two hidden
layers in our framework. The size of hidden layers are 256 and
128 respectively for both the evaluation and target Q-Network.
We have used Relu activation function. As an optimizer for NN,
Adam optimizer with a learning rate of 0.001 is used and value
of discount factor (gamma) was kept at 0.8. To train the Q-
Network, a random batch of 64 samples is read from the replay
buffer of size 100000 to de-correlate the learning samples and to
improve the learning efficiency. The hyper parameters including
learning rate, layers sizes, discount factor and batch size were
empirically chosen after running multiple experimentations under
different QoS requirements and scenarios (their universality is left
for further study). The size of the input to neural network is equal
to the number of the slices in the network however, neural network
can be trained with any number of slices depending on QoS classes
in the network. After taking the optimal action (correct quantum
assignment to slices) represented by equation 5, the agent gets a
feedback from the environment in the form of reward calculated
using equation ?? and moves into the new state. During this
time step, Q-values of actions are calculated using the Bellman
Optimality equation Afterwards, the neural network performs the
update while minimizing the loss function. The flow chart of the
DDQN algorithm used in our DRL based QoS Slice Resource
Management framework is given in Figure 2.

V. PERFORMANCE EVALUATION

In order to evaluate the proposed DRL based QoS slice resource
management solution, a 5GEmpower based real world test bed
has been used. For WiFi connectivity, IEEE 802.11n standard has
been used with 2.4 GHz band in real world environment where
other WiFi access points and devices are sharing the channel with
our setup to capture real world network effects. Iperf3 has been
used to generate TCP and UDP traffic in the downlink to emulate
different applications. For application QoS, Network (QoS) slicing
was employed where slice requirements can be predefined in the
network considering the service level agreements. In our evalua-
tion framework, the slice requirements were estimated using time
interval based packet estimator. The time interval of 5 seconds
was used to make the throughput estimates. The slice throughput
requirements were were kept such that all available network
capacity is utilized to create a resource constrained environment.
The slice requirements were changed in run time by generating
different traffic streams with different rates during the training and
evaluation of algorithms. For the performance evaluation, we have
considered three different slices in our study along with the default
slice however, more number of slices can also be considered in the
proposed framework depending on QoS classes. The DRL agent is
deployed as Network Application in the SDN controller that takes
input from the InfluxDB, where 5GEmpower stores its statistics,
to observe its state and take suitable action as per learnt policy.

A. Slice Throughput Performance
In order to observe the performance of the DRL agent, we have

included threshold requirements of the slices in our framework to
measure performance of our resource assignments by the DRL
agent. These threshold requirements are estimated in real time
to create a dynamic and autonomous QoS delivery. The SDN
controller continuously estimates slice throughput requirements
and DRL agent learns the environment through exploration and
exploitation. The DRL agent explores the environment during the
training phase and uses larger quantum value changes (700 µsec)
to quickly learn the slice requirements and wireless environment.
Afterwards, the quantum changes are done in small steps (200
µsec) to stabilize the slice throughputs. In this way, the DRL
agent is able to meet the slice throughput requirements as shown
in Figure 3(a).

The large variations in throughputs in start are due to large
quantum changes. Our proposed scheme is tested in real world
scenario where other WiFi APs were being operated in the same
frequency bands, our system faced interferences from other APs.
The DRL agent is able to achieve the desired throughput by
continually adapting the resource assignments as per channel
conditions. From Figure 3(a), we can see that channel conditions
at 95 sec and 130 sec goes bad for the slice 1 and system quickly



Fig. 4. DRL Agent Adaptation to Changing Slice Requirements

recovers it back to optimal configuration. When the channel
conditions worsen such that the desired threshold requirements
cannot be met, the AP divides the available capacity proportional
to the overall slice requirements. On the contrary, ATERR [8]
based resource assignment calculates quantum assignments as per
available number of slices without looking at channel conditions
and hence cannot always meet desired threshold requirements.
B. Adaptation of DRL Agent to changing Threshold Requirements

The throughput requirements of QoS flows in the network are
not fixed and keep on changing with time. Moreover, keeping the
throughput assignments fixed for different slices is also not wise
as throughput from slice 1 can be assigned to other slices when
there are no QoS flows present in slice 1. In order to test the per-
formance of the DRL agent and its capability to adapt to changing
slice throughput requirements, varying traffic with different packet
sizes was generated in different slices. As our DRL agent was
trained based for different slice requirements therefore, it quickly
determines optimal slice resource configurations to meet their new
requirements as shown in Figure 4. This is because the DRL agent
learns the network dynamics and slice throughput requirements
and tries to maximize the long term reward. This enables agent
to keep past actions and slice requirements in consideration while
taking resource allocation decisions and hence it quickly adapts
to the changing throughput requirements.

C. Maximizing Aggregate Network Throughput
Optimal quantum assignments to the QoS slices in a dynamic

wireless environment, specifically where multiple APs from other
network are also operating can improve the aggregate network
capacity and can provide higher throughput to the users in the
slices. Since our proposed scheme tries to maximize the aggregate
network throughput along with satisfying slice throughput require-
ments, we are able to achieve higher throughputs of slices and
aggregate throughput compared to the ATERR scheme as shown
in CDFs in Fig 5.

VI. CONCLUSION AND FUTURE DIRECTIONS

To address the shortcomings in present WiFi QoS mechanism
and improving QoS satisfaction of IoT applications, we have pro-
posed a Deep Reinforcement Learning based slice resource man-
agement algorithm that assigns efficient and dynamic resources
to QoS slices for meeting their throughput requirements. The
DRL agent adapts to changing slice requirements by employing
feedbacks in the form of rewards and is able to meet the dynamic
QoS needs in a wireless IoT network. Our frameworks provides
more efficient, flexible and granular control over QoS provisioning
in future IoT networks. In this work, we have tested the system
with 3 slices only however, it can be tested with more than 3

Fig. 5. Comparison of Empirical CDFs of Slice Throughputs

slices and up to any number of slices. In our future work we
plan to target lower layer parameters at the MAC and PHY layers
like Contention Window (CW) size, Inter Frame Spacing (IFS),
MCS, buffer sizes and transmit power etc to develop better control
over slice resources. These parameters can bring change in slice
throughputs and packet delays at faster timescales of the order of
milliseconds therefore, they can make system more adaptable to
quick changes in slice requirements.

REFERENCES

[1] P. Karwel et al., “Ericsson mobility report,” Ericsson AB, Technol. Emerg.
Business, Stockholm, Sweden, Tech. Rep. EAB-21, 2021.

[2] W. Li, Y. Chai, F. Khan, S. R. U. Jan, S. Verma, V. G. Menon, X. Li, et al.,
“A comprehensive survey on machine learning-based big data analytics for
iot-enabled smart healthcare system,” Mobile Networks and Applications,
vol. 26, no. 1, pp. 234–252, 2021.

[3] IEEE, “Ieee 802.11e-2005,” IEEE Standard for Information Technology,
2005.
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